【題目】設函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)有兩個零點,求滿足條件的最小正整數(shù)的值.

【答案】(1) 時,的單調(diào)遞增區(qū)間為;當時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)3.

【解析】

1)先求導,再對進行分類討論,利用導數(shù)與函數(shù)的單調(diào)性的關(guān)系即可得出;

2)由(1)可知,若函數(shù)有兩個零點,則,且.轉(zhuǎn)化為求滿足的最小正整數(shù)的值,利用單調(diào)性判斷其零點所在的最小區(qū)間即可求得.

1)函數(shù)的定義域為.

.

,

時,,函數(shù)上單調(diào)遞增;

時,由,得;由,得.所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

綜上所述,當時,的單調(diào)遞增區(qū)間為

時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.

2)由(1)可知,若函數(shù)有兩個零點,則,且.

,

.

,易知上是增函數(shù),且,

.

所以存在,使,

時,;當時,.

所以滿足的最小正整數(shù)的值為3.

時,,且函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

時,函數(shù)有兩個零點.

綜上,滿足條件的最小正整數(shù)的值為3.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱臺中,底面,四邊形為菱形,,.

(1)若中點,求證:平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的公差d≠0,且a1a3,a13成等比數(shù)列,若a1=1,Sn為數(shù)列{an}的前n項和,則的最小值為(   。

A.4B.3C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在棱錐P-ABCD中,PA平面ABCD,底面ABCD為直角梯形,PA=AD=DC=2,AB=4且ABCD,BAD=90°.

(1)求證:BCPC;

(2)PB與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面推理是類比推理的是(

A.兩條直線平行,則同旁內(nèi)角互補,若是同旁內(nèi)角,則

B.某校高二有20個班,1班有51位團員,2班有53位團員,3班有52位團員,由此推測各班都超過50位團員

C.由平面三角形的面積(其中是三角形的周長,是三角形內(nèi)切圓的半徑),推測空間中三棱錐的體積(其中是三棱錐的表面積,是三棱錐內(nèi)切球的半徑)

D.一切偶數(shù)能被2整除,是偶數(shù),故能被2整數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班共有學生45人,其中女生18人,現(xiàn)用分層抽樣的方法,從男、女學生中各抽取若干學生進行演講比賽,有關(guān)數(shù)據(jù)見下表(單位:人)

性別

學生人數(shù)

抽取人數(shù)

女生

18

男生

3

1)求;

2)若從抽取的學生中再選2人做專題演講,求這2人都是男生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程是是參數(shù)),以坐標原點為原點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)判斷直線與曲線的位置關(guān)系;

(2)過直線上的點作曲線的切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效的改良玉米品種,為農(nóng)民提供技術(shù)支.現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如右圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.

1)完成列聯(lián)表,并判斷是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關(guān)?

2①按照分層抽樣的方式,在上述樣本中,從易倒伏和抗倒伏兩組中抽取9株玉米,設取出的易倒伏矮莖玉米株數(shù)為,求的分布列(概率用組合數(shù)算式表示);

②若將頻率視為概率,從抗倒伏的玉米試驗田中再隨機抽取出50株,求取出的高莖玉米株數(shù)的數(shù)學期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系.曲線的極坐標方程為

(1)寫出的普通方程和的直角坐標方程;

(2)設點上,點上,求的最小值及此時點的直角坐標.

查看答案和解析>>

同步練習冊答案