已知x∈R,i為虛數(shù)單位,若(1-2i)(x+i)=4-3i,則x的值等于( 。
A、-6B、-2C、2D、6
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:先化簡(jiǎn)已知的等式,再利用兩個(gè)復(fù)數(shù)相等的條件,解方程組求得x的值.
解答: 解:∵(1-2i)(x+i)=4-3i,
∴x+2+(1-2x)i=4-3i,
∴x+2=4,且 1-2x=-3,
∴x=2,
故選:C.
點(diǎn)評(píng):本題考查兩個(gè)復(fù)數(shù)的乘法法則的應(yīng)用,以及兩個(gè)復(fù)數(shù)相等的條件,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在R上的增函數(shù),則不等式f(x)>f(2x-3)的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)設(shè)函數(shù)f(x)=
x2+2(x≥2)
2x(x<2)
,求①f〔f(1)〕;②f(x)=3求x;
(2)若f(x+
1
x
)=x2+
1
x2
求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
sinα+cosα
sinα
=
4
3
,則3sin2α-cos2α=( 。
A、
13
5
B、
5
13
C、-
13
5
D、-
5
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的函數(shù),且滿足f(x+2)=-
1
f(x)
,f(1)=-
1
8
,則f(2015)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
ax2-3ax+a+5
的定義域?yàn)镽,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將兩個(gè)數(shù)A=6,B=5交換,使A=5,B=6,使用賦值語(yǔ)句正確的一組(  )
A、C=B,B=A,A=C
B、A=B,B=A
C、B=A,A=B
D、A=C,C=B,B=A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集為R,集合A={x|x2-x-2≥0},則∁RA=( 。
A、{x|x<-1,或x>2}
B、{x|x<-1,或x≥2}
C、{x|-1<x<2}
D、{x|-1≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+
1-x
ax
,其中a為大于零的常數(shù).
(Ⅰ)若函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)求函數(shù)f(x)在區(qū)間[1,2]上的最小值;
(Ⅲ)求證:對(duì)于任意的n≥2,n∈N*,都有l(wèi)nn>
1
22
+
1
32
+…+
1
n2
成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案