精英家教網 > 高中數學 > 題目詳情

【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長.

【答案】解:(Ⅰ)已知等式利用正弦定理化簡得:2cosC(sinAcosB+sinBcosA)=sinC, 整理得:2cosCsin(A+B)=sinC,
∵sinC≠0,sin(A+B)=sinC
∴cosC= ,
又0<C<π,
∴C= ;
(Ⅱ)由余弦定理得7=a2+b2﹣2ab ,
∴(a+b)2﹣3ab=7,
∵S= absinC= ab= ,
∴ab=6,
∴(a+b)2﹣18=7,
∴a+b=5,
∴△ABC的周長為5+
【解析】(Ⅰ)已知等式利用正弦定理化簡,整理后利用兩角和與差的正弦函數公式及誘導公式化簡,根據sinC不為0求出cosC的值,即可確定出出C的度數;(2)利用余弦定理列出關系式,利用三角形面積公式列出關系式,求出a+b的值,即可求△ABC的周長.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax2﹣2ax+b,當x∈[0,3]時,|f(x)|≤1恒成立,則2a+b的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家之一,城市缺水問題較為突出.某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準x(噸),一位居民的月用水量不超過x的部分按平價收費,超出x的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖. (Ⅰ)求直方圖中a的值;
(Ⅱ)若該市有110萬居民,估計全市居民中月均用水量不低于3噸的人數,請說明理由;
(Ⅲ)若該市政府希望使80%的居民每月的用水量不超過標準x(噸),估計x的值(精確到0.01),并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(sinx,﹣2cosx), =(sinx+ cosx,﹣cosx),x∈R.函數f(x)=
(1)求函數f(x)的最小正周期;
(2)求函數f(x)在區(qū)間 上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正項數列{an}的前n項和為Sn , 滿足an=2 ﹣1.若對任意的正整數p、q(p≠q),不等式SP+Sq>kSp+q恒成立,則實數k的取值范圍為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線y=x2﹣6x+1與坐標軸的交點都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C與直線x﹣y+a=0交與A,B兩點,且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a∈R,函數f(x)=log2 +a).
(1)當a=1時,解不等式f(x)>1;
(2)若關于x的方程f(x)+log2(x2)=0的解集中恰有一個元素,求a的值;
(3)設a>0,若對任意t∈[ ,1],函數f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從參加考試的學生中抽出60名學生,將其成績(均為整數)分成六組[40,50),[50,60)[90,100]后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ) 求成績落在[70,80)上的頻率,并補全這個頻率分布直方圖;
(Ⅱ) 估計這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ) 設學生甲、乙的成績屬于區(qū)間[40,50),現從成績屬于該區(qū)間的學生中任選兩人,求甲、乙中至少有一人被選的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:x2+y2=12,直線l:4x+3y=25.求圓C上任意一點A到直線l的距離小于2的概率.

查看答案和解析>>

同步練習冊答案