已知橢圓(a>b>0),點P(a),a在橢圓上.

(Ⅰ)求橢圓的離心率.

(Ⅱ)設(shè)A為橢圓的右頂點,O為坐標原點,若Q在橢圓上且滿足|AQ|=|AO|R直線(X)的斜率的值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(08年湖南卷理)已知橢圓ab>0)的右焦點為F,右準線為,離心率e=

過頂點A(0,b)作AM,垂足為M,則直線FM的斜率等于           .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓+=1(a>b>0)內(nèi)有一點A,F1為左焦點,F2為右焦點,在橢圓上求一點P,使|PF1|+|PA|取得最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓+=1 (a>b>0)的兩準線間的距離為,離心率為,則橢圓的方程為(    )

A. +=1                                      B. +=1

C. +=1                                      D. +=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009安徽卷文)(本小題滿分12分)

已知橢圓(a>b>0)的離心率為,以原點為圓心。橢圓短半軸長半徑的

圓與直線y=x+2相切,

(Ⅰ)求a與b;21世紀教育網(wǎng)      

(Ⅱ)設(shè)該橢圓的左,右焦點分別為,直線且與x軸垂直,動直線與y軸垂直,與點p..求線段P垂直平分線與的交點M的軌跡方程,并指明曲線類型。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年北京四中高二(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

已知橢圓(a>b>0)的右焦點為F2(3,0),離心率為
(1)求橢圓的方程.
(2)設(shè)直線y-kx與橢圓相交于A,B兩點,M,N分別為線段AF2,BF2的中點,若坐標原點O在以MN為直徑的圓上,求k的值.

查看答案和解析>>

同步練習冊答案