已知函數(shù)為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=xf'(x),其中f'(x)為f(x)的導函數(shù).證明:對任意x>0,g(x)<1+e-2
【答案】分析:(Ⅰ)由題意,求出函數(shù)的導數(shù),再由曲線y=f(x)在點(1,f(1))處的切線與x軸平行可得出f′(1)=0,由此方程即可解出k的值;
(II)由(I)知,=,x∈(0,+∞),利用導數(shù)解出函數(shù)的單調(diào)區(qū)間即可;
(III)先給出g(x)=xf'(x),考查解析式發(fā)現(xiàn)當x≥1時,g(x)=xf'(x)≤0<1+e-2一定成立,由此將問題轉(zhuǎn)化為證明g(x)<1+e-2在0<x<1時成立,利用導數(shù)求出函數(shù)在(0,1)上的最值,與1+e-2比較即可得出要證的結(jié)論.
解答:解:(I)函數(shù)為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),
=,x∈(0,+∞),
由已知,,∴k=1.
(II)由(I)知,=,x∈(0,+∞),
設(shè)h(x)=1-xlnx-x,x∈(0,+∞),h'(x)=-(lnx+2),
當x∈(0,e-2)時,h'(x)>0,當x∈( e-2,1)時,h'(x)<0,
可得h(x)在x∈(0,e-2)時是增函數(shù),在x∈( e-2,1)時是減函數(shù),在(1,+∞)上是減函數(shù),
又h(1)=0,h(e-2)>0,又x趨向于0時,h(x)的函數(shù)值趨向于1
∴當0<x<1時,h(x)>0,從而f'(x)>0,
當x>1時h(x)<0,從而f'(x)<0.
綜上可知,f(x)的單調(diào)遞增區(qū)間是(0,1),單調(diào)遞減區(qū)間是(1,+∞).
(III)由(II)可知,當x≥1時,g(x)=xf'(x)≤0<1+e-2,故只需證明g(x)<1+e-2在0<x<1時成立.
當0<x<1時,ex>1,且g(x)>0,∴
設(shè)F(x)=1-xlnx-x,x∈(0,1),則F'(x)=-(lnx+2),
當x∈(0,e-2)時,F(xiàn)'(x)>0,當x∈( e-2,1)時,F(xiàn)'(x)<0,
所以當x=e-2時,F(xiàn)(x)取得最大值F(e-2)=1+e-2
所以g(x)<F(x)≤1+e-2
綜上,對任意x>0,g(x)<1+e-2
點評:本題考查利用導數(shù)研究函數(shù)的最值及曲線上某點處的切線方程,解題的關(guān)鍵是靈活利用導數(shù)工具進行運算及理解導數(shù)與要解決問題的聯(lián)系,此類題運算量大,易出錯,且考查了轉(zhuǎn)化的思想,判斷推理的能力,綜合性強,是高考?碱}型,學習時要嚴謹認真,注意總結(jié)其解題規(guī)律.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2012-2013學年湖北省高三(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù)為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=xf'(x),其中f'(x)為f(x)的導函數(shù).證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年甘肅省隴南市西和一中高三(上)月考數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=xf'(x),其中f'(x)為f(x)的導函數(shù).證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省遂寧市射洪中學高三零診數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=xf'(x),其中f'(x)為f(x)的導函數(shù).證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山東省高考數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù)為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=xf'(x),其中f'(x)為f(x)的導函數(shù).證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

同步練習冊答案