【題目】我國古代數(shù)學著作《九章算術》有如下問題:“今有人持金出五關,前關二而稅一,次關三而稅一,次關四而稅一,次關五而稅一,次關六而稅一,并五關所稅,適重一斤,問本持金幾何”其意思為“今有人持金出五關,第1關收稅金 ,第2關收稅金為剩余金的 ,第3關收稅金為剩余金的 ,第4關收稅金為剩余金的 ,第5關收稅金為剩余金的 ,5關所收稅金之和,恰好重1斤,問原來持金多少?”若將題中“5關所收稅金之和,恰好重1斤,問原來持金多少?”改成假設這個原來持金為x,按此規(guī)律通過第8關,則第8關需收稅金為x.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)證明函數(shù)f(x)在(﹣1,+∞)上為單調遞增函數(shù);
(2)若x∈[0,2],求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= x2﹣ax+(3﹣a)lnx,a∈R.
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線2x﹣y+1=0垂直,求a的值;
(2)設f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:﹣5﹣f(x1)<f(x2)<﹣ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面為正三角形,側棱垂直底面,AB=4,AA1=6,若E,F(xiàn)分別是棱BB1 , CC1上的點,且BE=B1E,C1F= CC1 , 則異面直線A1E與AF所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在高中學習過程中,同學們經常這樣說“如果物理成績好,那么學習數(shù)學就沒什么問題”某班針對“高中生物理對數(shù)學學習的影響”進行研究,得到了學生的物理成績與數(shù)學成績具有線性相關關系的結論,現(xiàn)從該班隨機抽取5名學生在一次考試中的物理和數(shù)學成績,如表:
編號 | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
數(shù)學(y) | 130 | 125 | 110 | 95 | 90 |
(參考公式:b= , = b ,)參考數(shù)據:902+852+742+682+632=29394
90×130+85×125+74×110+68×95+63×90=42595.
(1)求數(shù)學y成績關于物理成績x的線性回歸方程 = x+ (b精確到0.1),若某位學生的物理成績?yōu)?0分時,預測他的物理成績.
(2)要從抽取的這五位學生中隨機選出三位參加一項知識競賽,以X表示選中的學生的數(shù)學成績高于100分的人數(shù),求隨機變量X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設對于任意實數(shù)x,不等式|x+6|+|x﹣1|≥m恒成立. (I) 求m 的取值范圍;
(Ⅱ)當m取最大值時,解關于x的不等式:|x﹣4|﹣3x≤2m﹣9.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線: ,直線與拋物線交于, 兩點.
(1)若直線, 的斜率之積為,證明:直線過定點;
(2)若線段的中點在曲線: 上,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】北京某附屬中學為了改善學生的住宿條件,決定在學校附近修建學生宿舍,學?倓辙k公室用1000萬元從政府購得一塊廉價土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費用與建筑高度有關,樓房每升高一層,整層樓每平方米建筑費用提高萬元,已知建筑第5層樓房時,每平方米建筑費用為萬元.
若學生宿舍建筑為x層樓時,該樓房綜合費用為y萬元,綜合費用是建筑費用與購地費用之和,寫出的表達式;
為了使該樓房每平方米的平均綜合費用最低,學校應把樓層建成幾層?此時平均綜合費用為每平方米多少萬元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com