【題目】已知函數(shù)f(x)=|2x﹣a|+|x﹣1|.
(1)當a=3時,求不等式f(x)≥2的解集;
(2)若f(x)≥5﹣x對x∈R恒成立,求實數(shù)a的取值范圍.

【答案】
(1)解:a=3時,即求解|2x﹣3|+|x﹣1|≥2,

①當x≥ 時,不等式即2x﹣3+x﹣1≥2,解得x≥2,

②當1<x< 時,不等式即3﹣2x+x﹣1≥2,解得x<0.

③當x≤1時,3﹣2x+1﹣x≥2,解得2x≤2,即x≤

∴綜上,原不等式解集為{x|x≤ 或x≥2}


(2)解:即|2x﹣a|≥5﹣x﹣|x﹣1|恒成立

令g(x)=5﹣x﹣|x﹣1|= ,

則由函數(shù)g(x)的圖象可得它的最大值為4,

故函數(shù)y=|2x﹣a|的圖象應該恒在函數(shù)g(x)的圖象的上方,

數(shù)形結(jié)合可得 ≥3,

∴a≥6,即a的范圍是[6,+∞)


【解析】(1)通過討論x的范圍,求出不等式的解集即可;(2)令g(x)=5﹣x﹣|x﹣1|,求出g(x)的最大值,從而求出a的范圍即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,分別為橢圓的左、右焦點,且.

(1)求橢圓的方程;

(2)設為橢圓上任意一點,以為圓心,為半徑作圓,當圓與直線有公共點時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足a1= ,an+1=an2﹣an+1(n∈N*),則m= + +…+ 的整數(shù)部分是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)過點( ,1),離心率為 ,直線l:y=k(x+1)與橢圓C相交于不同的兩點A,B.
(1)求橢圓C的方程;
(2)在x軸上是否存在點M,使 + 是與k無關的常數(shù)?若存在,求出點M的坐標,并求出此常數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,武漢市出現(xiàn)了非常嚴重的霧霾天氣,而燃放煙花爆竹會加重霧霾,是否應該全面禁放煙花爆竹已成為人們議論的一個話題.武漢市環(huán)保部門就是否贊成禁放煙花爆竹,對400位老年人和中青年市民進行了隨機問卷調(diào)查,結(jié)果如下表:

贊成禁放

不贊成禁放

合計

老年人

60

140

200

中青年人

80

120

200

合計

140

260

400

附:K2=

P(k2>k0

0.050

0.025

0.010

k0

3.841

5.024

6.635


(1)有多大的把握認為“是否贊成禁放煙花爆竹”與“年齡結(jié)構(gòu)”有關?請說明理由;
(2)從上述不贊成禁放煙花爆竹的市民中按年齡結(jié)構(gòu)分層抽樣出13人,再從這13人中隨機的挑選2人,了解他們春節(jié)期間在煙花爆竹上消費的情況.假設一位老年人花費500元,一位中青年人花費1000元,用X表示它們在煙花爆竹上消費的總費用,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={1,2,6},B={2,4},C={1,2,3,4},則(A∪B)∩C=( 。
A.{2}
B.{1,2,4}
C.{1,2,4,6}
D.{1,2,3,4,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是單調(diào)遞增的函數(shù)是(
A.y=﹣
B.y=3x﹣3x
C.y=x|x|
D.y=x3﹣x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,已知(a-3b)cos C=c(3cos B-cos A).

(1)求的值; (2)若c=a,求角C的大。

查看答案和解析>>

同步練習冊答案