【題目】2016年高一新生入學(xué)后,為了了解新生學(xué)業(yè)水平,某區(qū)對新生進(jìn)行了水平測試,隨機抽取了50名新生的成績,其相關(guān)數(shù)據(jù)統(tǒng)計如下:

分?jǐn)?shù)段

頻數(shù)

選擇題得分24分以上(含24分)

[40,50)

5

2

[50,60)

10

4

[60,70)

15

12

[70,80)

10

6

[80,90)

5

4

[90,100)

5

5

(Ⅰ)若從分?jǐn)?shù)在[70,80),[80,90)的被調(diào)查的新生中各隨機選取2人進(jìn)行追蹤調(diào)查,求恰好有2名新生選擇題得分不足24分的概率;
(Ⅱ)在(Ⅰ)的條件下,記選中的4名新生中選擇題得分不足24分的人數(shù)為X,求隨機變量X的分布列和數(shù)學(xué)期望.

【答案】解:(Ⅰ)由表知分?jǐn)?shù)在[70,80)內(nèi)的有10人,選擇題得分不足24分的有4人,

分?jǐn)?shù)在[80,90)內(nèi)的有5人,選擇題得分不足24分的有1人,

所以恰好有2名學(xué)生選擇題得分不足24分的概率事件由兩個互斥事件構(gòu)成,

即所求概率為 = ×

(Ⅱ)X的所有可能取值為0,1,2,3.

= ;

;

= ×

=

所以X的分布列是

X

0

1

2

3

P

所以X的數(shù)學(xué)期望


【解析】(Ⅰ)由表知分?jǐn)?shù)在[70,80)內(nèi)的有10人,選擇題得分不足24分的有4人,分?jǐn)?shù)在[80,90)內(nèi)的有5人,選擇題得分不足24分的有1人,然后求解互斥事件的概率.(Ⅱ)X的所有可能取值為0,1,2,3,求出概率,得到X的分布列然后求解期望與方差.
【考點精析】關(guān)于本題考查的離散型隨機變量及其分布列,需要了解在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于數(shù)據(jù)3,3,2,3,6,3,10,3,6,3,2.
①這組數(shù)據(jù)的眾數(shù)是3;
②這組數(shù)據(jù)的眾數(shù)與中位數(shù)的數(shù)值不相等;
③這組數(shù)據(jù)的中位數(shù)與平均數(shù)的數(shù)值相等;
④這組數(shù)據(jù)的平均數(shù)與眾數(shù)的值相等.
其中正確的結(jié)論的個數(shù)( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合 ,且A∩B=C,求實數(shù)x,y的值及A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱 中, ,底面三角形 是邊長為2的等邊三角形, 的中點.

(1)求證:
(2)若直線 與平面 所成的角為 ,求三棱柱 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 上有最大值9,最小值4.
(1)求實數(shù) 的值;
(2)若不等式 上恒成立,求實數(shù) 的取值范圍;
(3)若方程 有三個不同的實數(shù)根,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校夏令營有3名男同學(xué)A、B、C和3名女同學(xué)X,Y,Z,其年級情況如下表,現(xiàn)從這6名同學(xué)中隨機選出2人參加知識競賽(每人被選到的可能性相同).

一年級

二年級

三年級

男同學(xué)

A

B

C

女同學(xué)

X

Y

Z


(1)用表中字母列舉出所有可能的結(jié)果;
(2)設(shè)M為事件“選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)”,求事件M發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線l的參數(shù)方程為 t為參數(shù)).若以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為 . (Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)求直線l被曲線C所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個地區(qū)共有5個鄉(xiāng)鎮(zhèn),共30萬人,其人口比例為3∶2∶5∶2∶3,從這30萬人中抽取一個300人的樣本,分析某種疾病的發(fā)病率.已知這種疾病與不同的地理位置及水土有關(guān),則應(yīng)采取什么樣的抽樣方法?并寫出具體過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 為△ 所在平面外一點,且 , , 兩兩垂直,則下列結(jié)論:① ;② ;③ ;④ .其中正確的是( )
A.①②③
B.①②④
C.②③④
D.①②③④

查看答案和解析>>

同步練習(xí)冊答案