設(shè)y=f(x)在x∈[0,1]上的圖象如圖所示,且f(x)滿足f(1-x)=f(1+x),則f(x)
在[1,2]上的解析式為
f(x)=x,x∈[1,2]
f(x)=x,x∈[1,2]
分析:從要求的結(jié)論f(x)在[1,2]上的解析式不難知道:本題需要知道利用函數(shù)的對稱性,恰好題中給出了條件f(1-x)=f(1+x),因此可知函數(shù)的對稱性,所以只需求出f(x)在[0,1]上的解析式即可求解.
解答:解:由圖知,f(x)在[0,1]上的圖象是過兩點(1,1),(0,2)的線段,
斜率為-1,在y軸上的截距為2,
其解析式為:f(x)=-x+2,x∈[0,1];
∵f(x)滿足f(1-x)=f(1+x),可得 f(x)=f(-x+2),
當1≤x≤2時,0≤-x+2≤1,∴f(-x+2)=-(-x+2)+2=x,
∴f(x)=x,x∈[1,2];
故答案為:f(x)=x,x∈[1,2].
點評:本題是中檔題.考查函數(shù)解析式的求解及常用方法、函數(shù)的對稱性,是道綜合題,其中探討函數(shù)的對稱性是難點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
12
ax2-(2a+1)x+2lnx  (a∈R)

(Ⅰ)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=x2-2x,若對任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黃埔區(qū)一模 題型:解答題

對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省株洲二中高三(下)第十一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市黃浦區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

同步練習(xí)冊答案