【題目】已知橢圓 + =1(a>b>0)的右焦點為F2(1,0),點H(2, )在橢圓上.
(1)求橢圓的方程;
(2)點M在圓x2+y2=b2上,且M在第一象限,過M作圓x2+y2=b2的切線交橢圓于P,Q兩點,問:△PF2Q的周長是否為定值?如果是,求出定值;如果不是,說明理由.

【答案】
(1)解:∵橢圓 + =1(a>b>0)的右焦點為F2(1,0),點H(2, )在橢圓上,

∴由題意,得 ,

解得a=3,b=2

∴橢圓方程為


(2)解:設(shè)P(x1,y1),Q(x2,y2), (|x1|≤3)

∴|PF2|2=(x1﹣1)2+y12= (x1﹣9)2,

∴|PF2|=3﹣ x1

連接OM,OP,由相切條件知:

|PM|2=|OP|2﹣|OM|2=x12+y12﹣8=vx12,

∴|PM|= x1,

∴|PF2|+|PM|=3

同理可求|QF2|+|QM|=3

∴|F2P|+|F2Q|+|PQ|=6為定值


【解析】(1)由橢圓 + =1(a>b>0)的右焦點為F2(1,0),點H(2, )在橢圓上,建立方程組,可得a值,進而求出b值后,可得橢圓方程;(2)設(shè)P(x1 , y1),Q(x2 , y2),分別求出|F2P|,|F2Q|,結(jié)合相切的條件可得|PM|2=|OP|2﹣|OM|2求出|PQ|,可得結(jié)論.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)上的一點M的橫坐標為3,焦點為F,且|MF|=4.直線l:y=2x﹣4與拋物線C交于A,B兩點.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若P是x軸上一點,且△PAB的面積等于9,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lg(2+x)+lg(2﹣x).

(1)求函數(shù)f(x)的定義域并判斷函數(shù)f(x)的奇偶性;

(2)記函數(shù)g(x)= +3x,求函數(shù)g(x)的值域;

(3)若不等式 f(x)m有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB,AC3, BC2,P是△ABC內(nèi)的一點.

(1)若P是等腰直角三角形PBC的直角頂點,求PA的長;

(2)若∠BPC,設(shè)∠PCBθ,求△PBC的面積S(θ)的解析式,并求S(θ)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)定義域為R的奇函數(shù) (a為實數(shù)). (Ⅰ)求a的值;
(Ⅱ)判斷f(x)的單調(diào)性(不必證明),并求出f(x)的值域;
(Ⅲ)若對任意的x∈[1,4],不等式f(k﹣ )+f(2﹣x)>0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣
(1)用函數(shù)單調(diào)性的定義證明:函數(shù)f(x)在區(qū)間(0,+∞)上為增函數(shù);
(2)方程2tf(4t)﹣mf(2t)=0,當t∈[1,2]時,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為, .等 差數(shù)列中, ,且公差

求數(shù)列的通項公式

(Ⅱ)是否存在正整數(shù),使得?.若存在,求出的最小值;若 不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=2x﹣x2
(1)求x<0時f(x)的解析式;
(2)問是否存在正數(shù)a,b,當x∈[a,b]時,g(x)=f(x),且g(x)的值域為[ , ]?若存在,求出所有的a,b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x﹣2x , 若對任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,則實數(shù)t的取值范圍是

查看答案和解析>>

同步練習冊答案