已知函數(shù),
(Ⅰ)求函數(shù)的最大值;
(Ⅱ)對于一切正數(shù),恒有成立,求實數(shù)的取值組成的集合.
(Ⅰ)的最大值為            (Ⅱ)
本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運用。
(1)因為根據(jù)已知條件可知求解的函數(shù)解析式得到函數(shù)定義域和導(dǎo)數(shù),然后求解導(dǎo)數(shù),令導(dǎo)數(shù)大于零或者小于零得到函數(shù)的單調(diào)性,從而求解函數(shù)的極值和最值。
(2)要是對于一切的實數(shù)x,不等式恒成立,可以構(gòu)造函數(shù)利用導(dǎo)數(shù)求解最值得到結(jié)論。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
已知,其中是自然常數(shù),
(1)討論時, 的單調(diào)性、極值;
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使的最小值是3,如果存在,求出的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=4x3+ax2+bx+5在x=與x=-1時有極值.
(1)寫出函數(shù)的解析式;
(2)指出函數(shù)的單調(diào)區(qū)間;
(3)求f(x)在[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若,試確定函數(shù)的單調(diào)區(qū)間;
(2)若且對任意恒成立,試確定實數(shù)的取值范圍;
(3)設(shè)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)設(shè)函數(shù)
(Ⅰ)若函數(shù)在定義域上是單調(diào)函數(shù),求的取值范圍;
(Ⅱ)若,證明對于任意的,不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ln x-.
(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)x>1時,x2+lnx<x3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分,(Ⅰ)小題5分,(Ⅱ)小題7分)
設(shè)的導(dǎo)數(shù)為,若函數(shù)的圖像關(guān)于直線對稱,且
(Ⅰ)求實數(shù)的值(Ⅱ)求函數(shù)的極值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)
(1)若上無極值,求值;
(2)求上的最小值表達式;
(3)若對任意的,任意的,均有成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案