【題目】已知橢圓,為左焦點(diǎn),為上頂點(diǎn),為右頂點(diǎn),若,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為.
(1)求的標(biāo)準(zhǔn)方程;
(2)是否存在過點(diǎn)的直線,與和交點(diǎn)分別是和,使得?如果存在,求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)或
【解析】分析:(1)由題設(shè)有,再根據(jù)可得的值,從而得到橢圓的標(biāo)準(zhǔn)方程.
(2)因?yàn)?/span>,故,設(shè)直線方程為,分別聯(lián)立直線與橢圓、直線與拋物線的方程,消去后利用韋達(dá)定理用表示,解出后即得直線方程.
詳解:(1)依題意可知,即,
由右頂點(diǎn)為得,解得,所以的標(biāo)準(zhǔn)方程為.
(2)依題意可知的方程為,假設(shè)存在符合題意的直線,
設(shè)直線方程為,,
聯(lián)立方程組,得,
由韋達(dá)定理得,則,
聯(lián)立方程組,得,由韋達(dá)定理得,所以,
若,則,即,解得,
所以存在符合題意的直線方程為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若對(duì)于任意的,當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,過點(diǎn)作直線與拋物線交于,兩點(diǎn),點(diǎn)滿足,過作軸的垂線與拋物線交于點(diǎn),若,則點(diǎn)的橫坐標(biāo)為__________,__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長(zhǎng)軸長(zhǎng)為4
(1)求橢圓的方程;
(2)若是橢圓的左頂點(diǎn),經(jīng)過左焦點(diǎn)的直線與橢圓交于、兩點(diǎn),求與的面積之差的絕對(duì)值的最大值,并求取得最大值時(shí)直線的方程.為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:()的短軸長(zhǎng)為2,離心率為
(1)求橢圓C的方程
(2)若過點(diǎn)M(2,0)的引斜率為的直線與橢圓C相交于兩點(diǎn)GH,設(shè)P為橢圓C上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為.已知,其中為原點(diǎn), 為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn).若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)常數(shù).在平面直角坐標(biāo)系xOy中,已知點(diǎn),直線l:,曲線Γ:(,).l與x軸交于點(diǎn)A、與Γ交于點(diǎn)B.P、Q分別是曲線Γ與線段AB上的動(dòng)點(diǎn).
(1)用t表示點(diǎn)B到點(diǎn)F的距離;
(2)設(shè),,線段OQ的中點(diǎn)在直線FP上,求△AQP的面積;
(3)設(shè),是否存在以FP、FQ為鄰邊的矩形FPEQ,使得點(diǎn)E在Γ上?若存在,求點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn)離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)經(jīng)過橢圓左焦點(diǎn)的直線(不經(jīng)過點(diǎn)且不與軸重合)與橢圓交于兩點(diǎn),與直線:交于點(diǎn),記直線的斜率分別為.則是否存在常數(shù),使得向量 共線?若存在求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知cos2B+cosB=1-cosAcosC.
(1)求證:a,b,c成等比數(shù)列;
(2)若b=2,求△ABC的面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com