精英家教網 > 高中數學 > 題目詳情
已知雙曲線的中心在原點,焦點F1,F2在坐標軸上,離心率為
2
,且過點(4,-
10
)
,則雙曲線的標準方程是
x2-y2=6
x2-y2=6
分析:離心率為
2
,可知此雙曲線是等軸雙曲線,可設此雙曲線的標準方程為x2-y2=λ,把點(4,-
10
)
代入即可得出.
解答:解:∵離心率為
2
,可知此雙曲線是等軸雙曲線,可設此雙曲線的標準方程為x2-y2=λ,
把點(4,-
10
)
,代入可得λ=42-(-
10
)2
=6.
∴x2-y2=6.
故答案為x2-y2=6.
點評:本題考查了雙曲線的標準方程及其性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知雙曲線的中心在原點,焦點為F1(5,0),F2(-5,0),且過點(3,0),
(1)求雙曲線的標準方程.
(2)求雙曲線的離心率及準線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F2在坐標軸上,一條漸近線方程為y=x,且過點(4,-
10
)

(1)求雙曲線方程;
(2)設A點坐標為(0,2),求雙曲線上距點A最近的點P的坐標及相應的距離|PA|.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F2在坐標軸上,一條漸近線方程為y=x,且過點(4,-
10
)
,A點坐標為(0,2),則雙曲線上距點A距離最短的點的坐標是
7
,1)
7
,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•豐臺區(qū)一模)已知雙曲線的中心在原點,焦點在x軸上,一條漸近線方程為y=
3
4
x
,則該雙曲線的離心率是
5
4
5
4

查看答案和解析>>

同步練習冊答案