在△ABC中,AB=
2
3
AC,BM是∠ABC的平分線,△AMC的外接圓交BC邊于點N.求證:3CN=2AM.
考點:與圓有關(guān)的比例線段
專題:選作題,立體幾何
分析:利用角平分線的性質(zhì)可得
AB
BC
=
AM
MC
,又AB=
2
3
AC
,所以
AC
BC
=
2AM
3MC
,根據(jù)相交弦定理,即可得出結(jié)論.
解答: 證明:在△ABC中,因為BM是∠ABC的平分線,
所以
AB
BC
=
AM
MC

AB=
2
3
AC
,所以
AC
BC
=
2AM
3MC
.          ①…(4分)
因為CA與CB是圓O過同一點C的弦,
所以,CM•CA=CN•CB,即
CA
CB
=
CN
CM
.   ②…(8分)
由①、②可知 CN=
2
3
AM

所以3CN=2AM.                              …(10分)
點評:本題考查角平分線的性質(zhì)、相交弦定理,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

十二屆全國人大二次會議的人大代表和政協(xié)委員建議提供政策優(yōu)惠鼓勵人們到社區(qū)醫(yī)院就診.對某單位50名職工去年到社區(qū)醫(yī)院的就診次數(shù)進行的調(diào)查統(tǒng)計結(jié)果如下表所示:
社區(qū)就診次數(shù) 0 1 2 3
人數(shù) 5 10 20 15
根據(jù)上表信息解答以下問題:
(Ⅰ)從該單位任選兩名職工,用h表示這兩人到社區(qū)就診次數(shù)之和,求p(η=4或η=5)的值;
(Ⅱ)從該單位任選兩名職工,用x表示這兩人到社區(qū)就診次數(shù)之差的絕對值,求隨機變量x的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,C=2A,cosA=
3
4

(Ⅰ)求cosB;
(Ⅱ)若
BC
BA
=
27
2
,求邊AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):
x 2 4 5 6 8
y 30 40 60 50 70
(1)求回歸直線方程;
(2)試預(yù)測廣告費支出為10百萬元時,銷售額多大?
(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測值與實際值之差的絕對值不超過5的概率.
b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項和Sn滿足:S4-S1=28,且a3+2是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}為遞增數(shù)列,bn=
1
log2an•log2an+2
,Tn=b1+b2+…+bn,問是否存在最小正整數(shù)n使得Tn
1
2
成立?若存在,試確定n的值,不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(α)=
sin2(π-α)•cos(2π-α)•tan(-π+α)
sin(-π+α)•tan(-α+3π)

(1)化簡f(α);
(2)若α=-
31π
3
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,(x∈R)
(Ⅰ)求函數(shù)f(x)的最小值和最小正周期;
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且c=
3
,f(C)=0,
AC
AB
=
cosB
cosC
,求A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,若復(fù)數(shù)z=(2-i)(1+ai)為純虛數(shù),則實數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

五個數(shù):2,x,y,z,18成等比數(shù)列,則x=
 

查看答案和解析>>

同步練習(xí)冊答案