如圖,目標(biāo)函數(shù)z=ax-y的可行域?yàn)樗倪呅蜲ACB(含邊界),若(
2
3
4
5
)是該目標(biāo)函數(shù)z=ax-y的最優(yōu)解,則a的取值范圍是
(-
12
5
,-
3
10
(-
12
5
,-
3
10
分析:先根據(jù)約束條件畫(huà)出可行域,再利用幾何意義求最值,z=ax-y表示直線在y軸上的截距的相反數(shù),a表示直線的斜率,只需求出a的取值范圍時(shí),可行域直線在y軸上的截距最優(yōu)解即可.
解答:解:由可行域可知,直線AC的斜率=
4
5
-
1
3
=-
12
5
,
直線BC的斜率=
4
5
-1
2
3
=-
3
10

當(dāng)直線z=ax-y的斜率介于AC與BC之間時(shí),C(
2
3
4
5
)
是該目標(biāo)函數(shù)z=ax-y的最優(yōu)解,
所以a∈(-
12
5
,-
3
10
)
,
故答案為:(-
12
5
,-
3
10
點(diǎn)評(píng):本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值的方法反求參數(shù)的范圍,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,目標(biāo)函數(shù)z=kx+y的可行域?yàn)樗倪呅蜲ABC(含邊界),A(1,0)、C(0,1),若B(
3
4
,
2
3
)
為目標(biāo)函數(shù)取最大值時(shí)的最優(yōu)解,則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•松江區(qū)三模)如圖,目標(biāo)函數(shù)z=ax-y的可行域?yàn)樗倪呅蜲ACB(含邊界).若點(diǎn)C(3,2)是該目標(biāo)函數(shù)取最小值時(shí)的最優(yōu)解,則a的取值范圍是
-2≤a≤-
2
3
-2≤a≤-
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,目標(biāo)函數(shù)z=ax+y的可行域?yàn)樗倪呅蜲ABC(含邊界),若(
2
3
,
4
7
)
是該目標(biāo)函數(shù)z=ax-y的最優(yōu)解,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•湖北模擬)如圖,目標(biāo)函數(shù)z=kx+y的可行域?yàn)樗倪呅蜲ABC(含邊界),A(1,0)、C(0,1),若B(
3
4
,
2
3
)
為目標(biāo)函數(shù)取最大值的最優(yōu)解,則k的取值范圍是
[
4
9
8
3
]
[
4
9
,
8
3
]

查看答案和解析>>

同步練習(xí)冊(cè)答案