【題目】已知函數(shù).
當時,試判斷函數(shù)在區(qū)間上的單調(diào)性,并證明;
若不等式在上恒成立,求實數(shù)m的取值范圍.
【答案】(1)見解析; (2).
【解析】
(1)根據(jù)函數(shù)單調(diào)性的證明的定義法,取值,做差,若, ,判符號;(2)方法一,將問題等價于 恒成立,轉(zhuǎn)化為軸動區(qū)間定的問題;方法二,變量分離,轉(zhuǎn)化為 恒成立,轉(zhuǎn)化為函數(shù)求最值問題.
(1)當時,,此時在上單調(diào)遞增,證明如下:
對任意的,,若,
,
由,故有:,,
因此:,,
故有在上單調(diào)遞增;
(2)方法一:不等式在上恒成立
,
取,對稱軸
當時,對稱軸,
∴在上單調(diào)遞增, ,
故滿足題意,
當時,對稱軸,
又在上恒成立,
故
解得:,
故
綜上所述,實數(shù)的取值范圍為.
方法二:不等式在上恒成立
。
取
由結(jié)論:定義在上的函數(shù),當且僅當時取得最小值.
故 。
當且僅當,即時函數(shù)取得最小值.
故,即實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+(b﹣1)x+1(a,b∈R,a>0).
(1)若f(1)=0,且對任意x∈R,都有f(2﹣x)=f(2+x),求f(x)的解析式;
(2)已知x1 , x2為函數(shù)f(x)的兩個零點,且x2﹣x1=2,當x∈(x1 , x2)時,g(x)=﹣f(x)+2(x2﹣x)的最大值為,當a≥2時,求h(a)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.
(1)求橢圓的標準方程;
(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】幾位同學在研究函數(shù) 時,給出了下面幾個結(jié)論:
①的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是;
②若,則一定有;
③函數(shù)的值域為;
④若規(guī)定,,則對任意恒成立.
上述結(jié)論中正確的是____
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的面積為,且與軸、軸分別交于兩點.
(1)求圓的方程;
(2)若直線與線段相交,求實數(shù)的取值范圍;
(3)試討論直線與(1)小題所求圓的交點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如下表:
若將當日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”.已知“網(wǎng)購達人”與“網(wǎng)購探者”人數(shù)的比例為2:3.
(1)確定的值,并補全頻率分布直方圖;
(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當日被評為“皇冠店”,試判斷該網(wǎng)店當日能否被評為“皇冠店”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線: 的左右焦點分別為、, 為右支上的點,線段交的左支于點,若是邊長等于的等邊三角形,則雙曲線的標準方程為( )
A. B. C. D.
【答案】A
【解析】
即雙曲線的標準方程為,選A.
【題型】單選題
【結(jié)束】
11
【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com