【題目】定義:給定整數(shù)i,如果非空集合滿足如下3個(gè)條件:
①;②;③,若,則.
則稱集合A為“減i集”
(1)是否為“減0集”?是否為“減1集”?
(2)證明:不存在“減2集”;
(3)是否存在“減1集”?如果存在,求出所有“減1集”;如果不存在,說明理由.
【答案】(1)是“減0集”;不是“減1集”(2)證明見解析;(3)存在;,,,3,,,3,5,,,3,5,,,,
【解析】
(1),,,,即可得出是“減0集”,同理可得不是“減1集”.
(2)假設(shè)存在是“減2集”,則若,那么,當(dāng)時(shí),有,對,分類討論即可得出.
(3)存在“減1集” ..假設(shè),則中除了元素1以外,必然還含有其它元素.假設(shè),,而,因此.假設(shè),,而,因此.因此可以有,.假設(shè),,而,因此.假設(shè),,,,,因此.
因此可以有,3,.以此類推可得所有的.
(1),,,,是“減0集”
同理,,,,,不是“減1集”.
(2)假設(shè)存在是“減2集”,則若,
那么,當(dāng)時(shí),有,
則,一個(gè)為2,一個(gè)為4,所以集合中有元素6,
但是,,與是“減2集”,矛盾,故不存在“減2集”
(3)存在“減1集”..
①假設(shè),則中除了元素1以外,必然還含有其它元素.
假設(shè),,而,因此.
假設(shè),,而,因此.
因此可以有,.
假設(shè),,而,因此.
假設(shè),,,,,因此.
因此可以有,3,.
以此類推可得:,3,5,,,,,
以及的滿足以下條件的非空子集:,,,3,,,3,5,,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國武漢于2019年10月18日至2019年10月27日成功舉辦了第七屆世界軍人運(yùn)動(dòng)會(huì).來自109個(gè)國家的9300余名運(yùn)動(dòng)員同臺(tái)競技.經(jīng)過激烈的角逐,獎(jiǎng)牌榜的前3名如下:
國家 | 金牌 | 銀牌 | 銅牌 | 獎(jiǎng)牌總數(shù) |
中國 | 133 | 64 | 42 | 239 |
俄羅斯 | 51 | 53 | 57 | 161 |
巴西 | 21 | 31 | 36 | 88 |
某數(shù)學(xué)愛好者采用分層抽樣的方式,從中國和巴西獲得金牌選手中抽取了22名獲獎(jiǎng)代表.從這22名中隨機(jī)抽取3人, 則這3人中中國選手恰好1人的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年北京市百項(xiàng)疏堵工程基本完成.有關(guān)部門為了解疏堵工程完成前后早高峰時(shí)段公交車運(yùn)行情況,調(diào)取某路公交車早高峰時(shí)段全程所用時(shí)間(單位:分鐘)的數(shù)據(jù),從疏堵工程完成前的數(shù)據(jù)中隨機(jī)抽取5個(gè)數(shù)據(jù),記為A組,從疏堵工程完成后的數(shù)據(jù)中隨機(jī)抽取5個(gè)數(shù)據(jù),記為B組.
A組:128,100,151,125,120
B組:100,102,96,101,
己知B組數(shù)據(jù)的中位數(shù)為100,且從中隨機(jī)抽取一個(gè)數(shù)不小于100的概率是.
(1)求a的值;
(2)該路公交車全程所用時(shí)間不超過100分鐘,稱為“正點(diǎn)運(yùn)行”從A,B兩組數(shù)據(jù)中各隨機(jī)抽取一個(gè)數(shù)據(jù),記兩次運(yùn)行中正點(diǎn)運(yùn)行的次數(shù)為X,求X的分布列及期望;
(3)試比較A,B兩組數(shù)據(jù)方差的大小(不要求計(jì)算),并說明其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓,點(diǎn),是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn).
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)曲線與直線相交于,兩點(diǎn)(點(diǎn)在軸上方),且.點(diǎn),是曲線上位于直線兩側(cè)的兩個(gè)動(dòng)點(diǎn),且.求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解該校某年級學(xué)生的閱讀量(分鐘),隨機(jī)抽取了名學(xué)生調(diào)查一天的閱讀時(shí)間,統(tǒng)計(jì)結(jié)果如下圖表所示:
組號 | 分組 | 男生人數(shù) | 男生人數(shù)占本組人數(shù)的頻率 | 頻率分布直方圖 |
第1組 | 5 | 0.5 | ||
第2組 | 18 | 0.9 | ||
第3組 | 27 | 0.9 | ||
第4組 | 0.36 | |||
第5組 | 3 | 0.2 |
(1)求出的值并估計(jì)該校學(xué)生一天的人均閱讀時(shí)間;
(2)一天的閱讀時(shí)間不少于35分鐘稱為“喜好閱讀者”.根據(jù)以上數(shù)據(jù),完成下面的列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“喜好閱讀者”與“性別”有關(guān)?
喜好閱讀者 | 非喜好閱讀者 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附:(其中為樣本容量).
() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校開設(shè)了素描攝影剪紙書法四門選修課,要求每位同學(xué)都要選擇其中的兩門課程.已知甲同學(xué)選了素描,乙與甲沒有相同的課程,丙與甲恰有一門課程相同,丁與丙沒有相同課程.則以下說法錯(cuò)誤的是( )
A.丙有可能沒有選素描B.丁有可能沒有選素描
C.乙丁可能兩門課都相同D.這四個(gè)人里恰有2個(gè)人選素描
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為,以的短軸為直徑的圓與直線相切.
(1)求的方程;
(2)直線交于,兩點(diǎn),且.已知上存在點(diǎn),使得是以為頂角的等腰直角三角形,若在直線的右下方,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,若對任意的,,,存在正數(shù)使得,則稱數(shù)列具有守恒性質(zhì),其中最小的稱為數(shù)列的守恒數(shù),記為.
(1)若數(shù)列是等差數(shù)列且公差為,前項(xiàng)和記為.
①證明:數(shù)列具有守恒性質(zhì),并求出其守恒數(shù).
②數(shù)列是否具有守恒性質(zhì)?并說明理由.
(2)若首項(xiàng)為1且公比不為1的正項(xiàng)等比數(shù)列具有守恒性質(zhì),且,求公比值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的左、右焦點(diǎn)分別為、,過右焦點(diǎn)的直線:與橢圓交于,兩點(diǎn).當(dāng)時(shí),是橢圓的下頂點(diǎn),且的周長為6.
(1)求橢圓的方程;
(2)設(shè)橢圓的右頂點(diǎn)為,直線、分別與直線交于、點(diǎn),證明:當(dāng)變化時(shí),以線段為直徑的圓與直線相切.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com