【題目】已知函數(shù),若且,則下列結論:①;②;③;④,其中正確的序號為___________(把你認為正確的結論都填上).
【答案】②③④
【解析】
作出函數(shù)圖象,并設,則直線與函數(shù)圖象的四個交點的橫坐標分別為、、、,可得出,再結合對稱性與對數(shù)運算可對四個命題的正誤進行判斷.
如下圖所示,設,由圖象知.
則直線與函數(shù)圖象的四個交點的橫坐標分別為、、、,
二次函數(shù)的圖象的對稱軸為直線,則點、關于該直線對稱,
所以,,命題①錯誤;
由圖象知,,,由,得,
,即,解得,命題②正確;
由,可得,.
函數(shù)在區(qū)間上單調(diào)遞增,則,又,
,命題③正確;
由圖象知,,則,
函數(shù)在區(qū)間上單調(diào)遞減,所以,,即.
則,命題④正確.
因此,正確命題的序號為②③④.
故答案為:②③④.
科目:高中數(shù)學 來源: 題型:
【題目】2021年我省將實施新高考,新高考“依據(jù)統(tǒng)一高考成績、高中學業(yè)水平考試成績,參考高中學生綜合素質(zhì)評價信息”進行人才選拔。我校2018級高一年級一個學習興趣小組進行社會實踐活動,決定對某商場銷售的商品A進行市場銷售量調(diào)研,通過對該商品一個階段的調(diào)研得知,發(fā)現(xiàn)該商品每日的銷售量(單位:百件)與銷售價格(元/件)近似滿足關系式,其中為常數(shù)已知銷售價格為3元/件時,每日可售出該商品10百件。
(1)求函數(shù)的解析式;
(2)若該商品A的成本為2元/件,根據(jù)調(diào)研結果請你試確定該商品銷售價格的值,使該商場每日銷售該商品所獲得的利潤(單位:百元)最大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在棱長為1的正方體中,點是對角線上的動點(點與不重合),則下列結論正確的是____.
①存在點,使得平面平面;
②存在點,使得平面;
③的面積不可能等于;
④若分別是在平面與平面的正投影的面積,則存在點,使得.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校共有學生2000人,其中男生1100人,女生900人為了調(diào)查該校學生每周平均課外閱讀時間,采用分層抽樣的方法收集該校100名學生每周平均課外閱讀時間(單位:小時)
(1)應抽查男生與女生各多少人?
(2)如圖,根據(jù)收集100人的樣本數(shù)據(jù),得到學生每周平均課外閱讀時間的頻率分布直方圖,其中樣本數(shù)據(jù)分組區(qū)間為.若在樣本數(shù)據(jù)中有38名女學生平均每周課外閱讀時間超過2小時,請完成每周平均課外閱讀時間與性別的列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均課外閱讀時間與性別有關”.
男生 | 女生 | 總計 | |
每周平均課外閱讀時間不超過2小時 | |||
每周平均課外閱讀時間超過2小時 | |||
總計 |
附:
0.100 | 0.050 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中,動點與兩定點連線的斜率之積為,記點的軌跡為曲線.
(1)求曲線的方程;
(2)若過點的直線與曲線交于兩點,曲線上是否存在點使得四邊形為平行四邊形?若存在,求直線的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線過定點A(1,0).
(Ⅰ)若與圓相切,求的方程;
(Ⅱ)若與圓相交于P,Q兩點,線段PQ的中點為M,又與的交點為N,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,,,,,為的中點.
(1)求證:BM∥平面ADEF;
(2)求證:平面BDE⊥平面BEC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com