建筑一個(gè)容積為8000 m3、深6 m的長(zhǎng)方體蓄水池(無(wú)蓋),池壁造價(jià)為a元/米2,池底造價(jià)為2a元/米2,把總造價(jià)y元表示為底的一邊長(zhǎng)x m的函數(shù),其解析式為    ,定義域?yàn)?u>    .底邊長(zhǎng)為    m時(shí)總造價(jià)最低是    元.
【答案】分析:設(shè)池底一邊長(zhǎng)x(m),其鄰邊長(zhǎng)為(m),由面積公式算出池底的面積,由題意建立蓄水池的總造價(jià)y(元)與池底一邊長(zhǎng)x(m)之間的函數(shù)關(guān)系,因在函數(shù)關(guān)系式中出現(xiàn)了積為定值的形式,故可以用基本不等式求最值.
解答:解:設(shè)池底一邊長(zhǎng)x(m),則其鄰邊長(zhǎng)為(m),池壁面積為2•6•x+2•6•=12(x+)(m2),池底面積為x•=(m2),根據(jù)題意可知蓄水池的總造價(jià)y(元)與池底一邊長(zhǎng)x(m)之間的函數(shù)關(guān)系式為
y=12a(x+)+a.定義域?yàn)椋?,+∞).
x+≥2=(當(dāng)且僅當(dāng)x=即x=時(shí)取“=”).
∴當(dāng)?shù)走呴L(zhǎng)為m時(shí)造價(jià)最低,最低造價(jià)為(160a+a)元.
故應(yīng)填:y=12a(x+)+a,(0,+∞),,160a+a.
點(diǎn)評(píng):本題考點(diǎn)是基本不等式求最值,其特點(diǎn)是先根據(jù)題設(shè)中的條件建立起函數(shù)關(guān)系,再觀察函數(shù)的形式得出求造價(jià)最低的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

建筑一個(gè)容積為8000 m3、深6 m的長(zhǎng)方體蓄水池(無(wú)蓋),池壁造價(jià)為a元/米2,池底造價(jià)為2a元/米2,把總造價(jià)y元表示為底的一邊長(zhǎng)x m的函數(shù),其解析式為
 
,定義域?yàn)?!--BA-->
 
.底邊長(zhǎng)為
 
m時(shí)總造價(jià)最低是
 
元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

建筑一個(gè)容積為8000米3,深6米的長(zhǎng)方體蓄水池(無(wú)蓋),池壁造價(jià)為a元/米2,池底造價(jià)為2a元/米2,把總造價(jià)y元表示為一底的邊長(zhǎng)x米的函數(shù)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

建筑一個(gè)容積為8000 m3、深6 m的長(zhǎng)方體蓄水池(無(wú)蓋),池壁造價(jià)為a元/米2,池底造價(jià)為2a元/米2,把總造價(jià)y元表示為底的一邊長(zhǎng)x m的函數(shù),其解析式為_(kāi)_____,定義域?yàn)開(kāi)_____.底邊長(zhǎng)為_(kāi)_____m時(shí)總造價(jià)最低是______元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

建筑一個(gè)容積為8000 m3、深6 m的長(zhǎng)方體蓄水池(無(wú)蓋),池壁造價(jià)為a元/米2,池底造價(jià)為2a元/米2,把總造價(jià)y元表示為底的一邊長(zhǎng)x m的函數(shù),其解析式為_(kāi)_____,定義域?yàn)開(kāi)_____.底邊長(zhǎng)為_(kāi)_____m時(shí)總造價(jià)最低是______元.

查看答案和解析>>

同步練習(xí)冊(cè)答案