11.已知邊長分別為a,b,c的三角形ABC面積為S,內(nèi)切圓O的半徑為r,連接OA,OB,OC,則三角形OAB,OBC,OAC的面積分別為$\frac{1}{2}cr,\frac{1}{2}ar,\frac{1}{2}$br,由S=$\frac{1}{2}cr+\frac{1}{2}ar+\frac{1}{2}$br得r=$\frac{2S}{a+b+c}$,類比得四面體的體積為V,四個(gè)面的面積分別為S1,S2,S3,S4,則內(nèi)切球的半徑R=$\frac{3V}{{{S_1}+{S_2}+{S_3}+{S_4}}}$.

分析 由三角形的面積公式可知,是利用等積法推導(dǎo)的,即三個(gè)小三角形的面積之和等于大三角形ABC的面積,根據(jù)類比推理可知,將四面體分解為四個(gè)小錐體,則四個(gè)小錐體的條件之和為四面體的體積,由此單調(diào)內(nèi)切球的半徑.

解答 解:由條件可知,三角形的面積公式是利用的等積法來計(jì)算的.
∴根據(jù)類比可以得到,將四面體分解為四個(gè)小錐體,每個(gè)小錐體的高為內(nèi)切球的半徑,
∴根據(jù)體積相等可得$\frac{1}{3}$R(S1+S2+S3+S4)=V,
即內(nèi)切球的半徑R=$\frac{3V}{{{S_1}+{S_2}+{S_3}+{S_4}}}$,
故答案為$\frac{3V}{{{S_1}+{S_2}+{S_3}+{S_4}}}$.

點(diǎn)評 本題主要考查類比推理的應(yīng)用,要求正確理解類比的關(guān)系,本題的兩個(gè)結(jié)論實(shí)質(zhì)是利用了面積相等和體積相等來推導(dǎo)的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在平面直角坐標(biāo)系中,正方形的中心坐標(biāo)為(1,0),其一邊AB所在直線的方程為x-y+1=0,則邊CD所在直線的方程為x-y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)p:實(shí)數(shù)t滿足t2-5at+4a2<0(其中a≠0),q:方程$\frac{{x}^{2}}{t-2}$+$\frac{{y}^{2}}{t-6}$=1表示雙曲線.
(Ⅰ)若a=1,且p∧q為真命題,求實(shí)數(shù)t的取值范圍;
(Ⅱ)若q是p的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.我們將一個(gè)四面體四個(gè)角中直角三角形的個(gè)數(shù)定義為此四面體的直度,在四面體ABCD中,AD⊥平面ABC,AC⊥BC,則四面體ABCD的直度為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求數(shù)列$\frac{2}{1×2}$,$\frac{2}{2×3}$,$\frac{2}{3×4}$,$\frac{2}{4×5}$,…的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知O點(diǎn)為坐標(biāo)原點(diǎn),且點(diǎn)A(1,0),B(0,1),C(2sinθ,cosθ)
(1)若|$\overrightarrow{AC}|=|\overrightarrow{BC}$|,求tanθ的值;
(2)若$(\overrightarrow{OA}+2\overrightarrow{OB})•\overrightarrow{OC}$=1,求sinθcosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知偶函數(shù)g(x)滿足g(x+1)=g(x-1),且當(dāng)x∈[0,1]時(shí),g(x)=2x-1,函數(shù)f(x)=$\left\{\begin{array}{l}{(1-x)^{\frac{1}{2}},x≤1}\\{lo{g}_{5}x,x>1}\end{array}\right.$,則函數(shù)y=f(x)-g(x)的零點(diǎn)個(gè)數(shù)是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直角坐標(biāo)平面內(nèi),過點(diǎn)P(2,1)且與圓x2-x+y2+2y-4=0相切的直線( 。
A.有兩條B.有且僅有一條C.不存在D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=x2+3xf'(2),則f(2)=-8.

查看答案和解析>>

同步練習(xí)冊答案