化簡(jiǎn)求值:
(1)sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)
sin3(
π
2
+α)+cos3(
2
-α)
sin(3π+α)+cos(4π-α)
-sin(
2
+α)cos(
2
+α)
(3)已知α是第三角限的角,化簡(jiǎn)
1+sinα
1-sinα
-
1-sinα
1+sinα
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用,運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專(zhuān)題:三角函數(shù)的求值
分析:(1)利用誘導(dǎo)公式化簡(jiǎn)所給的式子,可得結(jié)果.
(2)利用誘導(dǎo)公式化簡(jiǎn)所給的式子為
cos3α-sin3α
cosα-sinα
-cosα•sinα,再利用立方差公式化簡(jiǎn)可得結(jié)果.
(3)由條件利用同角三角函數(shù)的基本關(guān)系化簡(jiǎn)所給的式子,可得結(jié)果.
解答: 解:(1)sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
=sin260°+cos180°+tan45°-cos2(30°)+sin30°=
3
4
-1+1-
3
4
+
1
2
=
1
2

(2)
sin3(
π
2
+α)+cos3(
2
-α)
sin(3π+α)+cos(4π-α)
-sin(
2
+α)cos(
2
+α)=
cos3α-sin3α
cosα-sinα
-cosα•sinα
=(1+cosαsinα)-sinαcosα=1. 
(3)∵α是第三角限的角,
1+sinα
1-sinα
-
1-sinα
1+sinα
=
(1+sinα)2
cos2α
-
(1-sinα)2
cos2α
=
1+sinα
|cosα|
-
1-sinα
|cosα|
=
1+sinα
-cosα
-
1-sinα
-cosα
=-2tanα.
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,△PAB是等邊三角形,D、E分別為AB、PC的中點(diǎn).
(1)若點(diǎn)F在BC邊上,BF=λBC,則實(shí)數(shù)λ為何值時(shí),PB∥平面DEF;
(2)若∠PAC=∠PBC=90°,AB=2,AC=
5
,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos(2x+
π
6

(1)當(dāng)-
π
6
≤x≤
π
3
時(shí),求函數(shù)y=f(x)的最大值和最小值及相應(yīng)的x的值;
(2)若方程f(x)=a在區(qū)間[0,
3
]上只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,a3=5,a7=13,數(shù)列{bn}的前n項(xiàng)和為Sn,且有Sn=2bn-1.
1)求{an}、{bn}的通項(xiàng)公式;
2)若cn=anbn,{cn}的前n項(xiàng)和為T(mén)n,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-ax2+2bx(a>0),且f′(1)=0
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)試問(wèn)函數(shù)f(x)圖象上是否存在兩點(diǎn)A(x1,y1),B(x2,y2),其中x2>x1,使得函數(shù)f(x)在x=
x1+x2
2
的切線(xiàn)與直線(xiàn)AB平行?若存在,求出A,B的坐標(biāo),不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)的漸近線(xiàn)方程為3x±4y=0,并且經(jīng)過(guò)點(diǎn)M(1,3),求雙曲線(xiàn)的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2lnx-x2
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若關(guān)于x的方程f(x)+x2-x-2-a=0在區(qū)間[1,3]內(nèi)恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
x
-alnx.(a∈R)
(1)當(dāng)a=-1時(shí),試確定函數(shù)f(x)在其定義域內(nèi)的單調(diào)性;
(2)求函數(shù)f(x)在(0,e)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱柱的底面邊長(zhǎng)為2,高為2,則它的外接球表面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案