精英家教網 > 高中數學 > 題目詳情

【題目】設數列滿足:,

(Ⅰ)求的通項公式及前項和;

(Ⅱ)若等差數列滿足 ,問:的第幾項相等?

【答案】III與數列的第項相等

【解析】

(Ⅰ)推導出數列{an}滿足:a11an+1=﹣2an,從而{an}是首項為1,公比為﹣2的等比數列,由此能求出{an}的通項公式和前n項和;(Ⅱ)由 b1=﹣8,b2=﹣6,{bn}為等差數列,求出{bn}的通項公式,從而b372×371064.由此能求出b37與數列{an}的第7項相等.

(Ⅰ)依題意,數列滿足:,

所以是首項為1,公比為的等比數列.

的通項公式為,

由等比數列求和公式得到:前項和.

(Ⅱ)由 () 可知,, ,

因為為等差數列, .

所以的通項公式為.

所以.

,解得.

所以與數列的第項相等.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若,求的單調區(qū)間;

(2)若函數存在唯一的零點,且,則的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若存在正數,使恒成立,求實數的最大值;

(2)設,若沒有零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

以平面直角坐標系xOy的原點為極點,x軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線l的坐標方程為,曲線C的參數方程為(θ為參數).

(1)求直線l的直角坐標方程和曲線C的普通方程;

(2)以曲線C上的動點M為圓心、r為半徑的圓恰與直線l相切,求r的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知, , .

1)若的充分不必要條件,求實數的取值范圍;

(2)若為真命題,“”為假命題,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠的機器上存在一種易損元件,這種元件發(fā)生損壞時,需要及時維修. 現有甲、乙兩名工人同時從事這項工作,下表記錄了某月1日到10日甲、乙兩名工人分別維修這種元件的件數.

日期

1

2

3

4

5

6

7

8

9

10

甲維修的元件數

3

5

4

6

4

6

3

7

8

4

乙維修的元件數

4

7

4

5

5

4

5

5

4

7

1)從這天中,隨機選取一天,求甲維修的元件數不少于5件的概率;

2)試比較這10天中甲維修的元件數的方差與乙維修的元件數的方差的大小.(只需寫出結論);

3)由于甲、乙的任務量大,擬增加工人,為使增加工人后平均每人每天維修的元件不超過3件,請利用上表數據估計最少需要增加幾名工人.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某企業(yè)有職工5000人,其中男職工3500人,女職工1500人.該企業(yè)為了豐富職工的業(yè)余生活,決定新建職工活動中心,為此,該企業(yè)工會采用分層抽樣的方法,隨機抽取了300名職工每周的平均運動時間(單位:h),匯總得到頻率分布表(如表所示),并據此來估計該企業(yè)職工每周的運動時間:

平均運動時間

頻數

頻率

[0,2

15

0.05

[2,4

m

0.2

[4,6

45

0.15

[6,8

755

0.25

[810

90

0.3

[10,12

p

n

合計

300

1

1)求抽取的女職工的人數;

2)①根據頻率分布表,求出mn、p的值,完成如圖所示的頻率分布直方圖,并估計該企業(yè)職工每周的平均運動時間不低于4h的概率;

男職工

女職工

總計

平均運動時間低于4h

平均運動時間不低于4h

總計

②若在樣本數據中,有60名女職工每周的平均運動時間不低于4h,請完成以下2×2列聯表,并判斷是否有95%以上的把握認為“該企業(yè)職工毎周的平均運動時間不低于4h與性別有關”.

附:K2=,其中n=a+b+c+d

PK2k0

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC的內角AB,C的對邊分別為a,bc,若a=bcosC+csinB

1)求B;

2)求y=sinA-sinC的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】十八大以來,我國新能源產業(yè)迅速發(fā)展.以下是近幾年某新能源產品的年銷售量數據:

年份

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

新能源產品年銷售(萬個)

1.6

6.2

17.7

33.1

55.6

(1)請畫出上表中年份代碼與年銷量的數據對應的散點圖,并根據散點圖判斷.

中哪一個更適宜作為年銷售量關于年份代碼的回歸方程類型;

(2)根據(Ⅰ)的判斷結果及表中數據,建立關于的回歸方程,并預測2019年某新能源產品的銷售量(精確到0.01).

參考公式:.

參考數據:,,,,其中.

查看答案和解析>>

同步練習冊答案