【題目】已知橢圓的左、右焦點分別是,且離心率為,點為橢圓上的動點,面積最大值為.

1)求橢圓的標準方程;

2是橢圓上的動點,且直線經(jīng)過定點,問在軸上是否存在定點,使得若存在,請求出定點,若不存在,請說明理由.

【答案】1;(2)存在,.

【解析】

1)由離心率為面積可求出的值,從而求出橢圓的標準方程;

(2)假設存在滿足題意的定點,設,因為,則直線斜率和為零,所以有,通過化簡可以得出的關系,從而判斷是否存在定點.

1面積最大值為:,又,,解得:.即:,所以方程為:.

(2)假設存在滿足題意的定點,設,

設直線的方程為,.

消去,得.

由直線過橢圓內(nèi)一點,故恒成立,

由求根公式得:,

,可得直線斜率和為零.,

,

.所以,

存在定點,當斜率不存在時定點也符合題意.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知三棱錐中,底面是等邊三角形,且,分別是的中點.

(1)證明:平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】春節(jié)過后,甲、乙、丙三人談論到有關部電影,的情況.

甲說:我沒有看過電影,但是有部電影我們?nèi)齻都看過;

乙說:三部電影中有部電影我們?nèi)酥兄挥幸蝗丝催^;

丙說:我和甲看的電影有部相同,有部不同.

假如他們都說的是真話,則由此可判斷三部電影中乙看過的部數(shù)是(

A.B.C.D.部或

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三角形的三個頂點的坐標分別為,,則該三角形的重心(三邊中線交點)的坐標為.類比這個結論,連接四面體的一個頂點及其對面三角形重心的線段稱為四面體的中線,四面體的四條中線交于一點,該點稱為四面體的重心.若四面體的四個頂點的空間坐標分別為,,則該四面體的重心的坐標為( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的兩個內(nèi)角.下列六個條件中,的充分必要條件的個數(shù)是 ( )

; ;

; ; .

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖像過點,且在處取得極值.

(1)若對任意恒成立,求實數(shù)的取值范圍;

(2)當,試討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設奇函數(shù)f (x )的定義域為R , , xf (x)=, f (x )在區(qū)間上的表達式為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】祖暅(公元前5~6世紀)是我國齊梁時代的數(shù)學家,是祖沖之的兒子,他提出了一條原原理:“冪勢既同,則積不容異.”這里的“冪”指水平截面的面積,“勢”指高。這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等。設由橢圓 所圍成的平面圖形繞 軸旋轉一周后,得一橄欖狀的幾何體(稱為橢球體),課本中介紹了應用祖暅原理求球體體積公式的做法,請類比此法,求出橢球體體積,其體積等于( )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案