已知函數(shù)y=x+
16x+2
,x∈(-2,+∞)
,則此函數(shù)的最小值為
6
6
分析:由x∈(-2,+∞)可知x+2>0,將y=x+
16
x+2
轉(zhuǎn)化成y=x+2+
16
x+2
-2,然后利用基本不等式即可求出所求,注意等號(hào)成立的條件.
解答:解:∵x∈(-2,+∞),
∴x+2>0,
由基本不等式可得,
y=x+
16
x+2
=x+2+
16
x+2
-2≥2
(x+2)×
16
x+2
-2=6,
當(dāng)且僅當(dāng)x+2=
16
x+2
即x+2=4時(shí),x=2時(shí)取等號(hào)“=”,
∴函數(shù)y=x+
16
x+2
,x∈(-2,+∞)
,則此函數(shù)的最小值為6.
故答案為:6.
點(diǎn)評(píng):本題主要考查基本不等式求解函數(shù)的最值,要注意配湊積為定值,可以訓(xùn)練答題者靈活變形及選用知識(shí)的能力.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x3-
1
2
x2+3
的圖象上A點(diǎn)處的切線與直線x-y+5=0的夾角為45°,則A點(diǎn)的橫坐標(biāo)為( 。
A、0
B、1
C、0或
1
6
D、1或
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
tx
(t>0)
和點(diǎn)P(1,0),過點(diǎn)P作曲線y=f(x)的兩條切線PM,PN,切點(diǎn)分別為M(x1,y1),N(x2,y2).
(1)求證:x1,x2是關(guān)于x的方程x2+2tx-t=0的兩根;
(2)設(shè)|MN|=g(t),求函數(shù)g(t);
(3)在(2)的條件下,若在區(qū)間[2,16]內(nèi)總存在m+1個(gè)實(shí)數(shù)a1,a2,…,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(a-3b+9)ln(x+3)+
1
2
x2+(b-3)x

(I)當(dāng)0<a<1且,f′(1)=0時(shí),求f(x)的單調(diào)區(qū)間;
(II)已知f′(3)≤
1
6
且對(duì)|x|≥2的實(shí)數(shù)x都有f'(x)≥0.若函數(shù)y=f′(x)有零點(diǎn),求函數(shù)y=f(x)與函數(shù)y=f′(x)的圖象在x∈(-3,2)內(nèi)的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=ax的圖象經(jīng)過平面區(qū)域
x-y+2≤0
2x+y-8≤0
x≥1

(1)求a取值范圍的集合為A;
(2)已知“命題p:?x∈A,使x2+bx+16>0”,寫出¬p,若命題p為真命題,求出b取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•嘉定區(qū)一模)(理)已知函數(shù)y=(
1
2
)x
的圖象與函數(shù)y=logax(a>0且a≠1)的圖象交于點(diǎn)P(x0,y0),如果x0≥2,那么a的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案