【題目】已知,,直線的斜率為,直線的斜率為,且.
(1)求點的軌跡的方程;
(2)設(shè),,連接并延長,與軌跡交于另一點,點是中點,是坐標(biāo)原點,記與的面積之和為,求的最大值.
【答案】(1) ;(2) .
【解析】試題分析:(1)設(shè),利用求得點的軌跡的方程;(2)由,分別為,,的中點,故,故與同底等高,故,,對斜率分類討論,聯(lián)立方程巧用維達(dá)表示面積即可.
試題解析:
(1)設(shè),∵,,∴,,
又,∴,∴,
∴軌跡的方程為(注:或,如不注明扣一分).
(2)由,分別為,,的中點,故,
故與同底等高,故,,
當(dāng)直線的斜率不存在時,其方程為,此時;
當(dāng)直線的斜率存在時,設(shè)其方程為:,設(shè),,
顯然直線不與軸重合,即;
聯(lián)立,解得,
,故,
故 ,
點到直線的距離,
,令,
故 ,
故的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過點. 為橢圓的右焦點, 為橢圓上關(guān)于原點對稱的兩點,連接分別交橢圓于兩點.
⑴求橢圓的標(biāo)準(zhǔn)方程;
⑵若,求的值;
⑶設(shè)直線, 的斜率分別為, ,是否存在實數(shù),使得,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱中,為的中點.
(1)求證:;
(2)若點為四邊形內(nèi)部及其邊界上的點,且三棱錐的體積為三棱柱體積的,試在圖中畫出點的軌跡,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷并證明函數(shù)在上的單調(diào)性;
(2)當(dāng)時,函數(shù)的最大值與最小值之差為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點的橢圓與雙曲線有公共焦點,且左、右焦點分別為,.這兩條曲線在第一象限的交點為,是以為底邊的等腰三角形.若,記橢圓與雙曲線的離心率分別為、,則的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學(xué)問題的答案.如圖是一個數(shù)表,第1行依次寫著從小到大的正整數(shù),然后把每行相鄰的兩個數(shù)的和寫在這兩數(shù)正中間的下方,得到下一行,數(shù)表從上到下與從左到右均為無限項,求滿足如下條件的最小四位整數(shù):第2017行的第項為2的正整數(shù)冪.已知,那么該款軟件的激活碼是( )
A. 1040 B. 1045 C. 1060 D. 1065
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-3x及y=f(x)上一點P(1,-2),過點P作直線l.
(1)求使直線l和y=f(x)相切且以P為切點的直線方程;
(2)求使直線l和y=f(x)相切且切點異于點P的直線方程y=g(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為,左頂點B與右焦點之間的距離為3.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線交軸于點,過且斜率不為的直線與橢圓相交于兩點,連接并延長分別與直線交于兩點. 若,求點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com