【題目】在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρcosθ=4.
(Ⅰ)M為曲線C1上的動點,點P在線段OM上,且滿足|OM||OP|=16,求點P的軌跡C2的直角坐標方程;
(Ⅱ)設(shè)點A的極坐標為(2, ),點B在曲線C2上,求△OAB面積的最大值.

【答案】解:(Ⅰ)曲線C1的直角坐標方程為:x=4,
設(shè)P(x,y),M(4,y0),則 ,∴y0= ,
∵|OM||OP|=16,
=16,
即(x2+y2)(1+ )=16,
整理得:(x﹣2)2+y2=4(x≠0),
∴點P的軌跡C2的直角坐標方程:(x﹣2)2+y2=4(x≠0).
(Ⅱ)點A的直角坐標為A(1, ),顯然點A在曲線C2上,|OA|=2,
∴曲線C2的圓心(2,0)到弦OA的距離d= = ,
∴△AOB的最大面積S= |OA|(2+ )=2+
【解析】(Ⅰ)設(shè)P(x,y),利用相似得出M點坐標,根據(jù)|OM||OP|=16列方程化簡即可;
(Ⅱ)求出曲線C2的圓心和半徑,得出B到OA的最大距離,即可得出最大面積.
【考點精析】本題主要考查了點到直線的距離公式的相關(guān)知識點,需要掌握點到直線的距離為:才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標系中,曲線的參數(shù)方程為為參數(shù));在極坐標系(與直角坐標系取相同的單位長度,且以原點為極點,以軸正半軸為極軸)中,直線的方程為.

(1)求曲線的普通方程和直線的直角坐標方程;

(2)求直線被曲線截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校對校園進行綠化,移栽香樟和桂花兩種大樹各2株,若香樟的成活率為,桂花的成活率為,假設(shè)每棵樹成活與否是相互獨立的.求:

Ⅰ)兩種樹各成活一株的概率;

Ⅱ)設(shè)ξ表示兩種樹成活的總株數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面,,,,的中點.

(1)求證:;

(2)求證:;

(3)求二面角E-AB-C的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,為使輸出S的值小于91,則輸入的正整數(shù)N的最小值為( )

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4 , 坐標系與參數(shù)方程]
在直角坐標系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)).(10分)
(1)若a=﹣1,求C與l的交點坐標;
(2)若C上的點到l距離的最大值為 ,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汕頭某通訊設(shè)備廠為適應(yīng)市場需求,提高效益,特投入98萬元引進世界先進設(shè)備奔騰6號,并馬上投入生產(chǎn).第一年需要的各種費用是12萬元,從第二年開始,所需費用會比上一年增加4萬元,而每年因引入該設(shè)備可獲得的年利潤為50萬元.

請你根據(jù)以上數(shù)據(jù),解決下列問題:(1)引進該設(shè)備多少年后,收回成本并開始盈利?(2)引進該設(shè)備若干年后,有兩種處理方案:第一種:年平均盈利達到最大值時,以26萬元的價格賣出;第二種:盈利總額達到最大值時,以8萬元的價格賣出.問哪種方案較為合算?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】因金融危機,某公司的出口額下降,為此有關(guān)專家提出兩種促進出口的方案,每種方案都需要分兩年實施。若實施方案一,預(yù)計第一年可以使出口額恢復(fù)到危機前的倍、倍、倍的概率分別為、;第二年可以使出口額為第一年的倍、倍的概率分別為、。若實施方案二,預(yù)計第一年可以使出口額恢復(fù)到危機前的倍、倍、倍的概率分別為、;第二年可以使出口額為第一年的倍、倍的概率分別為。實施每種方案第一年與第二年相互獨立。令表示方案實施兩年后出口額達到危機前的倍數(shù)。

1)寫出的分布列;

2)實施哪種方案,兩年后出口額超過危機前出口額的概率更大?

3)不管哪種方案,如果實施兩年后出口額達不到、恰好達到、超過危機前出口額,預(yù)計利潤分別為萬元、萬元、萬元,問實施哪種方案的平均利潤更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是最近十屆奧運會的年份、屆別、主辦國,以及主辦國在上屆獲得的金牌數(shù)、當屆

獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù):

年份

1972

1976

1980

1984

1988

1992

1996

2000

2004

2008

屆別

20

21

22

23

24

25

26

27

28

29

主辦國家

聯(lián)邦

德國

加拿大

蘇聯(lián)

美國

韓國

西班牙

美國

澳大

利亞

希臘

中國

上屆金牌數(shù)

5

0

49

未參加

6

1

37

9

4

32

當界金牌數(shù)

13

0

80

83

12

13

44

16

6

51

某體育愛好組織,利用上表研究所獲金牌數(shù)與主辦奧運會之間的關(guān)系,

(1)求出主辦國在上屆所獲金牌數(shù)(設(shè)為)與在當屆所獲金牌數(shù)(設(shè)為)之間的線性回歸方程

其中

(2)在2008年第29屆北京奧運會上日本獲得9塊金牌,則據(jù)此線性回歸方程估計在2020 年第 32 屆東

京奧運會上日本將獲得的金牌數(shù)為(所有金牌數(shù)精確到整數(shù))

查看答案和解析>>

同步練習(xí)冊答案