精英家教網 > 高中數學 > 題目詳情

【題目】已知m≠0,向量 =(m,3m),向量 =(m+1,6),集合A={x|(x﹣m2)(x+m﹣2)=0}.
(1)判斷“ ”是“| |= ”的什么條件
(2)設命題p:若 ,則m=﹣19,命題q:若集合A的子集個數為2,則m=1,判斷p∨q,p∧q,¬q的真假,并說明理由.

【答案】
(1)解:若 ,則6m=3m(m+1),∴m=1(m=0舍去),此時,

,則m=±1,故“ ”是“ ”的充分不必要條件


(2)解:若 ,則m(m+1)+18m=0,∴m=﹣19(m=0舍去),∴p為真命題.

由(x﹣m2)(x+m﹣2)=0得x=m2,或x=2﹣m,若集合A的子集個數為2,則集合A中只有1個元素,

則m2=2﹣m,解得m=1或﹣2,∴q為假命題.

∴p∨q為真命題,p∧q為假命題,¬q為真命題


【解析】【(1)由 ,則6m=3m(m+1解出m即可判斷出結論.(2)若 ,則m(m+1)+18m=0,解出m,即可判斷出p真假.由(x﹣m2)(x+m﹣2)=0得x=m2,或x=2﹣m,若集合A的子集個數為2,則集合A中只有1個元素,

則m2=2﹣m,解得m,即可判斷出真假.

【考點精析】通過靈活運用復合命題的真假,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知A、B、C是拋物線y2=2px(p>0)上三個不同的點,且AB⊥AC.

(Ⅰ)若A(1,2),B(4,﹣4),求點C的坐標;
(Ⅱ)若拋物線上存在點D,使得線段AD總被直線BC平分,求點A的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】Sn為數列{an}的前n項和,已知 .則{an}的通項公式an=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側棱AA1⊥底面ABC, ,AB⊥AC,D是棱BB1的中點.
(Ⅰ)證明:平面A1DC⊥平面ADC;
(Ⅱ)求平面A1DC與平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓的方程為x2+y2﹣6x=0,過點(1,2)的該圓的三條弦的長a1 , a2 , a3構成等差數列,則數列a1 , a2 , a3的公差的最大值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,若存在x∈N*使得f(x)≤2成立,則實數a的取值范圍為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知x,y∈R,m+n=7,f(x)=|x﹣1|﹣|x+1|.
(1)解不等式f(x)≥(m+n)x;
(2)設max{a,b}= ,求F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種產品的廣告費用支出與銷售額之間有如下的對應數據(單位:萬元):

(1)求關于的線性回歸直線方程;

(2)據此估計廣告費用為10萬元時銷售收入的值.

(附:對于線性回歸方程,其中

參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設x>0,集合 ,若M∩N={1},則M∪N=(
A.{0,1,2,4}
B.{0,1,2}
C.{1,4}
D.{0,1,4}

查看答案和解析>>

同步練習冊答案