【題目】若{1,a, }={0,a2 , a+b},則a2005+b2005的值為(
A.0
B.﹣1
C.1
D.1或﹣1

【答案】B
【解析】解:根據(jù)題意,設(shè)A={1,a, },B={0,a2 , a+b} 若A=B,則A中必含有0,即a=0或 =0;可得a=0,或b=0;
而當(dāng)a=0時(shí),B中a2=0,不符合集合元素的互異性,故舍去,即b=0;
B中,必有1,則a+b=1或a2=1,
當(dāng)a+b=1時(shí),由b=0,則a=1,此時(shí)A中元素不滿足互異性,舍去;
當(dāng)a2=1時(shí),則a=±1,但考慮A中元素的互異性,則a≠1,則a=﹣1;
綜合可得:a=﹣1,b=0;
則a2005+b2005=﹣1;
故選B.
【考點(diǎn)精析】本題主要考查了集合的相等關(guān)系的相關(guān)知識點(diǎn),需要掌握只要構(gòu)成兩個(gè)集合的元素是一樣的,就稱這兩個(gè)集合相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實(shí)數(shù),,

(1)若函數(shù)的圖象過點(diǎn),且方程有且只有一個(gè)實(shí)根,求的表達(dá)式;

(2)在(1)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體中,分別是的中點(diǎn),,過三點(diǎn)的的平面截去長方體的一個(gè)角后.得到如圖所示的幾何體,且這個(gè)幾何體的體積為

(1)求證:平面

(2)求的長;

(3)在線段上是否存在點(diǎn),使直線垂直,如果存在,求線段的長,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用、、三種人工降雨方式分別對甲、乙、丙三地實(shí)施人工降雨,其試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)如表:

方式

實(shí)施地點(diǎn)

大雨

中雨

小雨

模擬實(shí)驗(yàn)總次數(shù)

4次

6次

2次

12次

3次

6次

3次

12次

2次

2次

8次

12次

假定對甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,請你根據(jù)人工降雨模擬實(shí)驗(yàn)的統(tǒng)計(jì)數(shù)據(jù):

(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;

(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只能是小雨或中雨即達(dá)到理想狀態(tài),記“甲、乙、丙三地中達(dá)到理想狀態(tài)的個(gè)數(shù)”為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a﹣ (a∈R)
(1)判斷函數(shù)f(x)的單調(diào)性并給出證明;
(2)若函數(shù)f(x)是奇函數(shù),則f(x)≥ 當(dāng)x∈[1,2]時(shí)恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖幾何體中,矩形所在平面與梯形所在平面垂直,且 , 的中點(diǎn).

(1)證明: 平面;

(2)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為平行四邊形, , , .

(Ⅰ)證明: 平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)的新產(chǎn)品必須先靠廣告打開銷路,該產(chǎn)品廣告效應(yīng)y(單位:元)是產(chǎn)品的銷售額與廣告費(fèi)x(單位:元)之間的差,如果銷售額與廣告費(fèi)x的算術(shù)平方根成正比,根據(jù)對市場的抽樣調(diào)查,每付出100元的廣告費(fèi),所得銷售額是1000元. (Ⅰ)求出廣告效應(yīng)y與廣告費(fèi)x之間的函數(shù)關(guān)系式;
(Ⅱ)該企業(yè)投入多少廣告費(fèi)才能獲得最大的廣告效應(yīng)?是不是廣告費(fèi)投入越多越好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱平面 , , ,點(diǎn)的中點(diǎn)

(1)證明: 平面;

(2)在線段上找一點(diǎn),使得直線所成角的為,求的值.

查看答案和解析>>

同步練習(xí)冊答案