已知:曲線C上任意一點(diǎn)到點(diǎn)F(1,0)的距離與到直線x=-1的距離相等.
(1)求曲線C的方程;
(2)如果直線y=k(x-1)交曲線C于A、B兩點(diǎn),是否存在實(shí)數(shù)k,使得以AB為直徑的圓經(jīng)過原點(diǎn)O?若存在,求出k的值;若不存在,說明理由.
【答案】分析:(1)利用曲線C上任意一點(diǎn)到點(diǎn)F(1,0)的距離與到直線x=-1的距離相等,可知曲線C的軌跡是以F(1,0)為焦點(diǎn)的拋物線,從而可求曲線C的方程;
(2)將y=k(x-1),代入y2=4x,得k2x2-2(k2+2)x+k2=0,利用韋達(dá)定理,可得x1x2+y1y2=-3≠0,從而可知以AB為直徑的圓不經(jīng)過原點(diǎn)O.
解答:解:(1)∵曲線C上任意一點(diǎn)到點(diǎn)F(1,0)的距離與到直線x=-1的距離相等.
∴曲線C的軌跡是以F(1,0)為焦點(diǎn)的拋物線
∴曲線C的方程為y2=4x;…(4分)
(2)將y=k(x-1),代入y2=4x,得k2x2-2(k2+2)x+k2=0…(8分)
記A(x1,y1),B(x2,y2),∴x1x2=1,x1+x2=,…(10分)
∴y1y2=k2(x1-1)(x2-1)=-4 …(12分)
∴x1x2+y1y2=-3≠0

∴以AB為直徑的圓不經(jīng)過原點(diǎn)O,
∴不存在滿足條件的k.…(14分)
點(diǎn)評:本題考查軌跡方程的求法,考查向量知識(shí)的運(yùn)用,解題的關(guān)鍵是正確運(yùn)用拋物線的定義,正確運(yùn)用韋達(dá)定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐曲線C上任意一點(diǎn)到兩定點(diǎn)F1(-1,0)、F2(1,0)的距離之和為常數(shù),曲線C的離心率e=
1
2

(1)求圓錐曲線C的方程;
(2)設(shè)經(jīng)過點(diǎn)F2的任意一條直線與圓錐曲線C相交于A、B,試證明在x軸上存在一個(gè)定點(diǎn)P,使
PA
PB
的值是常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓錐曲線C上任意一點(diǎn)到兩定點(diǎn)F1(-1,0)、F2(1,0)的距離之和為常數(shù),曲線C的離心率數(shù)學(xué)公式
(1)求圓錐曲線C的方程;
(2)設(shè)經(jīng)過點(diǎn)F2的任意一條直線與圓錐曲線C相交于A、B,試證明在x軸上存在一個(gè)定點(diǎn)P,使數(shù)學(xué)公式的值是常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省模擬題 題型:解答題

已知圓錐曲線C上任意一點(diǎn)到兩定點(diǎn)F1(-1,0)、F2(1,0)的距離之和為常數(shù),曲線C的離心率e=. (1)求圓錐曲線C的方程;
(2)設(shè)經(jīng)過點(diǎn)F2的任意一條直線與圓錐曲線C相交于A、B,試證明在x軸上存在一個(gè)定點(diǎn)P,使的值是常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省汕尾市陸豐市啟恩中學(xué)高二(下)第二次段考數(shù)學(xué)試卷(理科 )(解析版) 題型:解答題

已知圓錐曲線C上任意一點(diǎn)到兩定點(diǎn)F1(-1,0)、F2(1,0)的距離之和為常數(shù),曲線C的離心率
(1)求圓錐曲線C的方程;
(2)設(shè)經(jīng)過點(diǎn)F2的任意一條直線與圓錐曲線C相交于A、B,試證明在x軸上存在一個(gè)定點(diǎn)P,使的值是常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省江門市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知圓錐曲線C上任意一點(diǎn)到兩定點(diǎn)F1(-1,0)、F2(1,0)的距離之和為常數(shù),曲線C的離心率
(1)求圓錐曲線C的方程;
(2)設(shè)經(jīng)過點(diǎn)F2的任意一條直線與圓錐曲線C相交于A、B,試證明在x軸上存在一個(gè)定點(diǎn)P,使的值是常數(shù).

查看答案和解析>>

同步練習(xí)冊答案