【題目】如圖,四棱錐的側(cè)面是正三角形,底面是直角梯形,.

1)求證:;

2)若,求直線與平面所成角的正弦值.

【答案】1)證明見(jiàn)解析;(2.

【解析】

1)取中點(diǎn),根據(jù)等邊三角形性質(zhì)得,根據(jù)直角梯形以及中位線得,最后根據(jù)線面垂直判定定理以及性質(zhì)定理證得結(jié)果;

2)解法一,建立空間直角坐標(biāo)系,先求平面一個(gè)法向量,再根據(jù)向量數(shù)量積求向量夾角,最后根據(jù)線面角與向量夾角關(guān)系得結(jié)果;

解法二,設(shè)點(diǎn)到平面的距離為,利用平行轉(zhuǎn)化求點(diǎn)到平面的距離,過(guò)點(diǎn),可證平面,再根據(jù)直角三角形求得結(jié)果.

1)證明:取中點(diǎn),連,,

因?yàn)?/span>是正三角形,所以,

中點(diǎn),所以,

因?yàn)?/span>,所以,

所以,因?yàn)?/span>平面,

所以平面,

所以.

2,又,所以,則,

,所以平面,所以平面平面,

由定理可知平面,

建立如圖所示的空間直角坐標(biāo)系,不妨設(shè),

,,,,

設(shè)平面的法向量為,

可取,

,

所以,.

即直線與平面所成角的正弦值為.

解法二:

,又,所以,則,

,所以平面,所以平面平面,

平面平面,

由定理可知平面,不妨設(shè),

中,,,所以.

設(shè)直線與平面所成角為,點(diǎn)到平面的距離為,

因?yàn)?/span>,平面

所以平面,故點(diǎn)到平面的距離也為,

過(guò)點(diǎn),垂足為,由定理即知平面,

中,

所以,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸并取相同的單位長(zhǎng)度建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程,并說(shuō)明其表示什么軌跡;

(2)若直線的極坐標(biāo)方程為,求曲線上的點(diǎn)到直線的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了提高利潤(rùn),從2012年至2018年每年對(duì)生產(chǎn)環(huán)節(jié)的改進(jìn)進(jìn)行投資,投資金額與年利潤(rùn)增長(zhǎng)的數(shù)據(jù)如下表:

年份

2012

2013

2014

2015

2016

2017

2018

投資金額(萬(wàn)元)

年利潤(rùn)增長(zhǎng)(萬(wàn)元)

(1)請(qǐng)用最小二乘法求出關(guān)于的回歸直線方程;如果2019年該公司計(jì)劃對(duì)生產(chǎn)環(huán)節(jié)的改進(jìn)的投資金額為萬(wàn)元,估計(jì)該公司在該年的年利潤(rùn)增長(zhǎng)為多少?(結(jié)果保留兩位小數(shù))

(2)現(xiàn)從2012年—2018年這年中抽出三年進(jìn)行調(diào)查,記年利潤(rùn)增長(zhǎng)投資金額,設(shè)這三年中(萬(wàn)元)的年份數(shù)為,求隨機(jī)變量的分布列與期望.

參考公式:.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是兩個(gè)不同的平面,則的必要不充分條件是( )

A.內(nèi)存在一條直線垂直于內(nèi)的兩條相交直線

B.平行于的一個(gè)平面與垂直

C.內(nèi)存在一條直線垂直于內(nèi)的無(wú)數(shù)條直線

D.垂直于的一條直線與平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)給定自然數(shù)n≥2,求滿(mǎn)足下列條件的最大的N:無(wú)論怎樣將填人一個(gè)n×n的方格表,總存在同一行或同一列的兩個(gè)數(shù),它們的差不小于N。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),則以下結(jié)論正確的是(

A.函數(shù)的單調(diào)減區(qū)間是

B.函數(shù)有且只有1個(gè)零點(diǎn)

C.存在正實(shí)數(shù),使得成立

D.對(duì)任意兩個(gè)正實(shí)數(shù),,且,若

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為實(shí)數(shù),.證明:

(1)把寫(xiě)成無(wú)窮乘積有唯一的表達(dá)式其中,為正整數(shù),滿(mǎn)足;

(2)是有理數(shù),當(dāng)且僅當(dāng)它的無(wú)窮乘積具有下列性質(zhì):存在,對(duì)所有的,滿(mǎn)足

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購(gòu)買(mǎi)土特產(chǎn)的情況,對(duì)2019年元旦期間的90位游客購(gòu)買(mǎi)情況進(jìn)行統(tǒng)計(jì),得到如下人數(shù)分布表.

購(gòu)買(mǎi)金額(元)

人數(shù)

10

15

20

15

20

10

1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購(gòu)買(mǎi)金額是否少于60元與性別有關(guān).

不少于60

少于60

合計(jì)

40

18

合計(jì)

2)為吸引游客,該超市推出一種優(yōu)惠方案,購(gòu)買(mǎi)金額不少于60元可抽獎(jiǎng)3次,每次中獎(jiǎng)概率為(每次抽獎(jiǎng)互不影響,且的值等于人數(shù)分布表中購(gòu)買(mǎi)金額不少于60元的頻率),中獎(jiǎng)1次減5元,中獎(jiǎng)2次減10元,中獎(jiǎng)3次減15.若游客甲計(jì)劃購(gòu)買(mǎi)80元的土特產(chǎn),請(qǐng)列出實(shí)際付款數(shù)(元)的分布列并求其數(shù)學(xué)期望.

附:參考公式和數(shù)據(jù):,.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

同步練習(xí)冊(cè)答案