【題目】如圖,在ABC中,DE分別為AB,AC的中點,ODE的中點,AB=AC=2,BC=4.將ADE沿DE折起到A1DE的位置,使得平面A1DE平面BCED,如下圖.

(Ⅰ)求證:A1OBD;

(Ⅱ)求直線A1C和平面A1BD所成角的正弦值;

【答案】(Ⅰ)證明見詳解;(Ⅱ).

【解析】

(Ⅰ)先證,再由面面垂直,即可證明線面垂直,再推出線線垂直;

(Ⅱ)以為坐標原點,建立空間直角坐標系,求得直線的方向向量與平面的法向量,即可由向量法求得線面角的正弦值.

(Ⅰ)因為,分別為中點,

故可得,故為等腰三角形,又中點,

故可得,又因為平面A1DE平面BCED,且交線為,

平面,故平面,又平面,

.即證.

(Ⅱ)過,由(Ⅰ)可知平面,

平面,故可得,

又因為//,故可得.

綜上所述:兩兩垂直,

故以為坐標原點,分別為軸建立空間直角坐標系,

如下圖所示:

故可得

設平面的法向量為,

故可得,即

,可得..

,

故可得.

設直線A1C和平面A1BD所成角為,

故可得.

則直線A1C和平面A1BD所成角的正弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知兩條拋物線Cy22xEy22pxp0p1),MC上一點(異于原點O),直線OME的另一個交點為N.若過M的直線lE相交于AB兩點,且△ABN的面積是△ABO面積的3倍,則p_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點處的切線互相平行,則x1+x2的取值范圍為

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量<50 kg

箱產(chǎn)量≥50 kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機抽取10天的數(shù)據(jù),制表如圖:

每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(nèi)(含35件)的部分每件4元,超出35件的部分每件7.

1)根據(jù)表中數(shù)據(jù)寫出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);

2)為了解乙公司員工B的每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為X(單位:元),求X的分布列和數(shù)學期望;

3)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務費.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長都相等的正三棱柱中,是棱的中點,是棱上的動點.,隨著增大,平面與底面所成銳二面角的平面角是(

A.增大B.先增大再減小

C.減小D.先減小再增大

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定橢圓,稱圓心在原點,半徑為的圓是橢圓準圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.

1)求橢圓的方程和其準圓方程;

2)點是橢圓準圓上的動點,過點作橢圓的切線準圓于點.

當點準圓軸正半軸的交點時,求直線的方程并證明

求證:線段的長為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左頂點為,右焦點為,直線軸相交于點,且的中點.

(Ⅰ)求橢圓的離心率;

(Ⅱ)過點的直線與橢圓相交于兩點,都在軸上方,并且之間,且到直線的距離是到直線距離的倍.

①記的面積分別為,求;

②若原點到直線的距離為,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù))

1)求的單調(diào)區(qū)間;

2)已知關(guān)于的方程有三個實根,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案