(2012•閔行區(qū)一模)設(shè)x1、x2是關(guān)于x的方程x2+mx+
1+m2
=0
的兩個不相等的實數(shù)根,那么過兩點A(x1,
x
2
1
)
,B(x2
x
2
2
)
的直線與圓x2+y2=1的位置關(guān)系是( 。
分析:由x1、x2是關(guān)于x的方程的兩個不相等的實數(shù)根,利用韋達定理表示出兩根之和與兩根之積,再由A和B的坐標(biāo),利用直線斜率的公式求出直線AB的斜率,利用平方差公式化簡約分后得到結(jié)果,將兩根之和代入表示出斜率,由A和斜率寫出直線AB的方程,利用點到直線的距離公式表示出圓心到直線AB的距離d,將表示出的兩根之和與兩根之積代入,整理后得到d=r,可得出直線AB與圓相切.
解答:解:∵x1、x2是關(guān)于x的方程x2+mx+
1+m2
=0
的兩個不相等的實數(shù)根,
∴x1+x2=-m,x1x2=
1+m2
>0,
A(x1,
x
2
1
)
,B(x2,
x
2
2
)
,
∴直線AB的斜率為
x12-x22
x1-x2
=x1+x2=-m,
∴直線AB的方程為y-x12=-m(x-x1),即mx+y-mx1-x12=0,
由圓x2+y2=1,得到圓心(0,0),半徑r=1,
∵圓心到直線AB的距離d=
|x1(m+x1)|
m2+1
=
|x1(-x1-x2+x1)|
x1x2
=1=r,
∴直線AB與圓的位置關(guān)系是相切.
故選B
點評:此題考查了直線與圓的位置關(guān)系,韋達定理,涉及的知識有:直線的兩點式方程,點到直線的距離公式,直線與圓的位置關(guān)系由d與r的大小來判斷,當(dāng)d>r時,直線與圓相離;當(dāng)d=r時,直線與圓相切;當(dāng)d<r時,直線與圓相交(d為圓心到直線的距離,r為圓的半徑).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閔行區(qū)一模)設(shè)等差數(shù)列{an}的首項及公差均是正整數(shù),前n項和為Sn,且a1>1,a4>6,S3≤12,則a2012=
4024
4024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閔行區(qū)一模)在一圓周上給定1000個點.(如圖)取其中一點標(biāo)記上數(shù)1,從這點開始按順時針方向數(shù)到第二個點標(biāo)記上數(shù)2,從標(biāo)記上2的點開始按順時針方向數(shù)到第三個點標(biāo)記上數(shù)3,繼續(xù)這個過程直到1,2,3,…,2012都被標(biāo)記到點上,圓周上這些點中有些可能會標(biāo)記上不止一個數(shù),在標(biāo)記上2012的那一點上的所有標(biāo)記的數(shù)中最小的是
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閔行區(qū)一模)設(shè)雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的虛軸長為2
3
,漸近線方程是y=±
3
x
,O為坐標(biāo)原點,直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點,且
OA
OB

(1)求雙曲C的方程;
(2)求點P(k,m)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閔行區(qū)一模)將邊長分別為1、2、3、…、n、n+1、…(n∈N*)的正方形疊放在一起,形成如圖所示的圖形,由小到大,依次記各陰影部分所在的圖形為第1個、第2個、…、第n個陰影部分圖形.容易知道第1個陰影部分圖形的周長為8.設(shè)前n個陰影部分圖形的周長的平均值為f(n),記數(shù)列{an}滿足an=
f(n),當(dāng)n為奇數(shù)
f(an-1) ,當(dāng)n為偶數(shù)

(1)求f(n)的表達式;
(2)寫出a1,a2,a3的值,并求數(shù)列{an}的通項公式;
(3)記bn=an+s(s∈R),若不等式
.
bn+1bn+1
bn+2bn
.
>0
有解,求s的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案