【題目】如圖,在三棱錐中,平面 平面,點在上,
(Ⅰ)求證: ;
(Ⅱ)若二面角的余弦值為,求三棱錐的體積.
【答案】(Ⅰ)證明見解析;(Ⅱ)
【解析】試題分析:(Ⅰ)找準突破方向,證明平面即可,再根據(jù)條件分析,利用面面垂直得線線垂直及平面幾何知識即可證出;(Ⅱ)建系,利用空間向量解決問題,設(shè)設(shè),計算二面角即可.
試題解析:(Ⅰ)取的中點,連接
因為,所以,
又平面平面,平面平面平面,
所以平面,
又平面,所以
在中, ,所以,
由角平分線定理,得,
又,所以,
又因為平面平面,
所以平面,
又平面,所以
(Ⅱ)在中, ,
由余弦定理得,所以,即,
所以,所以,
結(jié)合(Ⅰ)知, 兩兩垂直,以為原點,分別以向量的方向為軸、軸、軸的正方向建立空間直角坐標系(如圖),設(shè),
則,
所以,
設(shè)是平面的一個法向量,
則即,整理,得
令,得
因為平面,所以是平面的一個法向量.
又因為二面角的余弦值為,
所以,解得或 (舍去),
又平面,A所以是三棱錐的高,
故
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=log2(4x)log2(2x),且x滿足4﹣17x+4x2≤0,求f(x)的最值,并求出取得最值時,對應(yīng)f(x)的 值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.
方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸出2個紅球則打6折,若摸出1個紅球,則打7折;若沒摸出紅球,則不打折.
方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個顧客均分別消費了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩名同學參加定點投籃測試,已知兩人投中的概率分別是和,假設(shè)兩人投籃結(jié)果相互沒有影響,每人各次投球是否投中也沒有影響.
(Ⅰ)若每人投球3次(必須投完),投中2次或2次以上,記為達標,求甲達標的概率;
(Ⅱ)若每人有4次投球機會,如果連續(xù)兩次投中,則記為達標.達標或能斷定不達標,則終止投籃.記乙本次測試投球的次數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列結(jié)論正確的個數(shù)是( )
①命題“所有的四邊形都是矩形”是特稱命題;
②命題“x∈R,x2+2<0”是全稱命題;
③若p:x∈R,x2+4x+4≤0,則q:x∈R,x2+4x+4≤0是全稱命題.
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com