【題目】在平面直角坐標(biāo)系xOy內(nèi),動點(diǎn)P到定點(diǎn)F(﹣1,0)的距離與P到定直線x=﹣4的距離之比為 .
(1)求動點(diǎn)P的軌跡C的方程;
(2)設(shè)點(diǎn)A、B是軌跡C上兩個(gè)動點(diǎn),直線OA、OB與軌跡C的另一交點(diǎn)分別為A1、B1 , 且直線OA、OB的斜率之積等于- ,問四邊形ABA1B1的面積S是否為定值?請說明理由.
【答案】
(1)解:設(shè)P(x,y),由題意可得, ,
化簡得3x2+4y2=12,
所以,動點(diǎn)P的軌跡C的方程為
(2)解:設(shè)A(x1,y1),B(x2,y2),
由 ,得 ,
,
因?yàn)辄c(diǎn)A、B在橢圓C上,
所以 , ,
所以, = ,
化簡得 .
① 當(dāng)x1=x2時(shí),則四邊形ABA1B1為矩形,y2=﹣y1,則 ,
由 ,得 ,
解得 , ,S=|AB||A1B|=4|x1||y1|= ;
②當(dāng)x1≠x2時(shí),直線AB的方向向量為 ,
直線AB的方程為(y2﹣y1)x﹣(x2﹣x1)y+x2y1﹣x1y2=0,
原點(diǎn)O到直線AB的距離為 ,
所以△AOB的面積 ,
根據(jù)橢圓的對稱性,四邊形ABA1B1的面積S=4S△AOB=2|x1y2﹣x2y1|,
所以,
= ,
所以 .
所以,四邊形ABA
【解析】(1)設(shè)P(x,y),由點(diǎn)到直線的距離公式和兩點(diǎn)的距離公式,可得, ,化簡即可得到所求軌跡方程;(2)設(shè)A(x1 , y1),B(x2 , y2),運(yùn)用兩點(diǎn)的距離公式和斜率公式,結(jié)合點(diǎn)A、B在橢圓C上,可得x12+x22=4,討論①當(dāng)x1=x2時(shí),則四邊形ABA1B1為矩形;②當(dāng)x1≠x2時(shí),通過三角形的面積公式和橢圓的對稱性,即可得到所求面積為定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面為直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,PA=AD=AB=2BC,M,N分別為PC,PB的中點(diǎn). (Ⅰ)求證:PB⊥DM;
(Ⅱ)求CD與平面ADMN所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5. (Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求證二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)證明:在線段BC1上存在點(diǎn)D,使得AD⊥A1B,并求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知底面為邊長為2的正方形,側(cè)棱長為1的直四棱柱ABCD﹣A1B1C1D1中,P是面A1B1C1D1上的動點(diǎn).給出以下四個(gè)結(jié)論中,正確的個(gè)數(shù)是( ) ①與點(diǎn)D距離為 的點(diǎn)P形成一條曲線,則該曲線的長度是 ;
②若DP∥面ACB1 , 則DP與面ACC1A1所成角的正切值取值范圍是 ;
③若 ,則DP在該四棱柱六個(gè)面上的正投影長度之和的最大值為 .
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且當(dāng)x>0時(shí),f(x)=lg ,若對任意實(shí)數(shù)t∈[ ,2],都有f(t+a)﹣f(t﹣1)≥0恒成立,則實(shí)數(shù)a的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣6x+5<0},B={x| <2x﹣4<16},C={x|﹣a<x≤a+3}
(1)求A∪B和(RA)∩B
(2)若A∪C=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C的內(nèi)角對邊分別為a,b,c,滿足(a+b+c)(a﹣b+c)=ac. (Ⅰ)求B.
(Ⅱ)若sinAsinC= ,求C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 與y軸交于B1、B2兩點(diǎn),F(xiàn)1為橢圓C的左焦點(diǎn),且△F1B1B2是腰長為 的等腰直角三角形.
(1)求橢圓C的方程;
(2)設(shè)直線x=my+1與橢圓C交于P、Q兩點(diǎn),點(diǎn)P關(guān)于x軸的對稱點(diǎn)為P1(P1與Q不重合),則直線P1Q與x軸是否交于一個(gè)定點(diǎn)?若是,請寫出該定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,且
(1)當(dāng) 時(shí),解不等式 ;
(2) 在 恒成立,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com