【題目】我市某礦山企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件該產(chǎn)品需另投入萬元,設該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且
(Ⅰ)寫出年利潤(萬元)關于產(chǎn)品年產(chǎn)量(千件)的函數(shù)關系式;
(Ⅱ)問:年產(chǎn)量為多少千件時,該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?
注:年利潤=年銷售收入-年總成本.
科目:高中數(shù)學 來源: 題型:
【題目】一臺機器按不同的轉(zhuǎn)速生產(chǎn)出來的某機械零件有一些會有缺點,每小時生產(chǎn)有缺點零件的多少,隨機器的運轉(zhuǎn)的速度而變化,具有線性相關關系,下表為抽樣試驗的結(jié)果:
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 8 | 10 | 12 | 14 | 16 |
每小時生產(chǎn)有缺點的零件數(shù)y(件) | 5 | 7 | 8 | 9 | 11 |
參考公式: , = = .
(1)如果y對x有線性相關關系,求回歸方程;
(2)若實際生產(chǎn)中,允許每小時生產(chǎn)的產(chǎn)品中有缺點的零件最多有10個,那么機器的運轉(zhuǎn)速度應控制在設么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[ ]表示不超過 的最大整數(shù).若 S1=[ ]+[ ]+[ ]=3,
S2=[ ]+[ ]+[ ]+[ ]+[ ]=10,
S3=[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+[ ]=21,
…,
則Sn=( )
A.n(n+2)
B.n(n+3)
C.(n+1)2﹣1
D.n(2n+1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=3sin(ωx+) 的部分圖象如圖所示,A,B兩點之間的距離為10,且f(2)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)的單位長度后所得函數(shù)圖象關于y軸對稱,則t的最小值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin( ﹣x)sinx﹣ cos2x. (I)求f(x)的最小正周期和最大值;
(II)討論f(x)在[ , ]上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x),若在定義域內(nèi)存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱x0為函數(shù)f(x)的局部對稱點.
(1)若a∈R,a≠0,證明:函數(shù)f(x)=ax2+x﹣a必有局部對稱點;
(2)若函數(shù)f(x)=2x+b在區(qū)間[﹣1,1]內(nèi)有局部對稱點,求實數(shù)b的取值范圍;
(3)若函數(shù)f(x)=4x﹣m2x+1+m2﹣3在R上有局部對稱點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電影院共有1000個座位,票價不分等次,根據(jù)電影院的經(jīng)營經(jīng)驗,當每張票價不超過10元時,票可全部售出;當票價高于10元時,每提高1元,將有30張票不能售出.為了獲得更好的收益,需要給電影院一個合適的票價,基本條件是:①為了方便找零和算賬,票價定為1元的整數(shù)倍;②電影院放映一場電影的成本是5750元,票房收入必須高于成本.用x(元)表示每張票價,用y(元)表示該電影放映一場的純收入(除去成本后的收入). (Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)票價定為多少時,電影放映一場的純收入最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com