如圖,平行六面體ANCD-EFGH中,棱AB,AD,AE的長分別為3,4,5,∠EAD=∠EAB=∠DAB=120°,則AG的長為   
【答案】分析:先把所求問題轉(zhuǎn)化為求向量AG的長度,再根據(jù)向量的三角形法則以及其為平行六面體得到=;再對等式兩邊平方即可找到結(jié)論.
解答:解:因為其為平行六面體
所以=
=
=+22+2
=32+42+52+2×3×4×cos120°+2×3×5×cos120°+2×4×5×cos120°
=50-12-15-20=3.
∴||=
故答案為:
點評:本題主要考查求兩點間的距離問題.解決本題的關(guān)鍵在于根據(jù)向量的三角形法則以及其為平行六面體得到=
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖所示,在平行六面體ABCD-A′B′C′D′中,
AB
=
a
,
AD
=
b
,
AA′
=
c
,P是CA′的中點,M是CD′的中點,N是C′D′的中點,點Q在CA′上,且CQ:QA′=4:1,用基底{
a
,
b
,
c
}表示以下向量:(1)
AP
;(2)
AM
;(3)
AN
;(4)
AQ

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在平行六面體ABCD-A′B′C′D′中,
AB
=
a
,
AD
=
b
,
AA′
=
c
,P是CA′的中點,M是CD′的中點,N是C′D′的中點,點Q在CA′上,且CQ:QA′=4:1,用基底{
a
,
b
,
c
}表示以下向量:(1)
AP
;(2)
AM
;(3)
AN
;(4)
AQ
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案