精英家教網 > 高中數學 > 題目詳情

某貨輪在A處看燈塔B在貨輪的北偏東的方向上,距離為海里,在A處看燈塔C在貨輪的北偏西的方向上,距離為海里,貨輪由A處向正北航行到D處時,再看燈塔B在南偏東方向上,求:

(1)AD的距離;

(2)CD的距離。

 

【答案】

(1)24海里;(2)8√3海里。

【解析】

試題分析:(Ⅰ)利用已知條件,利用正弦定理求得AD的長.

(Ⅱ)在△ADC中由余弦定理可求得CD,答案可得.解:(Ⅰ)在△ABD中,由已知得∠ADB=60°,B=45°

由正弦定理得AD=

(Ⅱ)在△ADC中,由余弦定理得CD2=AD2+AC2-2AD?ACcos30°,解得CD=8所以A處與D處之間的距離為24nmile,燈塔C與D處之間的距離為8nmile.

考點:解三角形的運用

點評:解決的關鍵是利用三角形的正弦定理和余弦定理來解三角形,屬于基礎題。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

某貨輪在A處看燈塔B在貨輪北偏東75°,距離為12
6
n mile;在A處看燈塔C在貨輪的北偏西30°,距離為8
3
n mile.貨輪由A處向正北航行到D處時,再看燈塔B在北偏東120°,求:
(Ⅰ)A處與D處之間的距離;
(Ⅱ)燈塔C與D處之間的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

某貨輪在A處看燈塔B在貨輪的北偏東75°的方向上,距離為12
6
海里,在A處看燈塔C在貨輪的北偏西30°的方向上,距離為8
3
海里,貨輪由A處向正北航行到D處時,再看燈塔B在南偏東60°方向上,求:
(1)AD的距離;
(2)CD的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,某貨輪在A處看燈塔B在貨輪的北偏東75°,距離18
6
海里,在A處看燈塔C在貨輪的北偏西30°,距離為12
3
海里,貨輪由A處向正北航行到D處時,再看燈塔B在北偏東120°,求:
(1)A處與D處的距離;
(2)燈塔C與D處的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,某貨輪在A處看燈塔B在貨輪的北偏東75°,距離為12
6
nmile,在A處看燈塔C在貨輪的北偏西30°,距離為8
3
nmile,貨輪由A處向正北方向經過2小時航行到達D處,再看燈塔B在北偏東120°.求:
(I)貨船的航行速度
(Ⅱ)燈塔C與D之間的距離(精確到1nmile).

查看答案和解析>>

科目:高中數學 來源:2014屆湖北省高一下學期聯(lián)考數學試卷(解析版) 題型:解答題

如圖,某貨輪在A處看燈塔B在貨輪的北偏東75°,距離為12海里,在A處看燈塔已在貨輪的北偏西30°,距離為8海里,貨輪由A處向正北航行到D處時,再看燈塔B在北偏東120°,求:

(1)A處與D處之間的距離.

(2)燈塔C與D之間的距離.

 

查看答案和解析>>

同步練習冊答案