精英家教網 > 高中數學 > 題目詳情
附加題選做題B、(選修4-2:矩陣與變換)
已知在一個二階矩陣M對應變換的作用下,點A(1,2)變成了點A′(7,10),點B(2,0)變成了點B′(2,4),求矩陣M的逆矩陣M-1
M-1=
ab
cd
,
依題意有:
ab
cd
7
10
=
1
2
ab
cd
2
4
=
2
0
------(4分)
7a+10b=1
7c+10d=2
2a+4b=2
2c+4d=0
,
解之得
a=-2
b=
3
2
c=1
d=-
1
2
------(8分)
所以M-1=
-2
3
2
1-
1
2
------(10分)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

附加題選做題B.(矩陣與變換)
設矩陣A=
m0
0n
,若矩陣A的屬于特征值1的一個特征向量為
1
0
,屬于特征值2的一個特征向量為
0
1
,求實數m,n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

附加題選做題B、(選修4-2:矩陣與變換)
已知在一個二階矩陣M對應變換的作用下,點A(1,2)變成了點A′(7,10),點B(2,0)變成了點B′(2,4),求矩陣M的逆矩陣M-1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

附加題選做題B.(矩陣與變換)
設矩陣A=
m0
0n
,若矩陣A的屬于特征值1的一個特征向量為
1
0
,屬于特征值2的一個特征向量為
0
1
,求實數m,n的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

附加題選做題B.(矩陣與變換)
設矩陣A=
m0
0n
,若矩陣A的屬于特征值1的一個特征向量為
1
0
,屬于特征值2的一個特征向量為
0
1
,求實數m,n的值.

查看答案和解析>>

同步練習冊答案