【題目】在下列命題中:①在中,,,,則解三角形只有唯一解的充要條件是:;②當(dāng)時,;③在中,若,則中一定為鈍角三角形;④扇形圓心角為銳角,周長為定值,則它面積最大時,一定有;⑤函數(shù)的單增區(qū)間為,其中真命題的序號為_____.

【答案】①②③⑤;

【解析】

對每一個命題逐一分析判斷得解. ①,利用正弦定理分析判斷;②,利用反三角函數(shù)的圖象分析判斷;③,利用反證法判斷;④,利用基本不等式判斷得解;⑤,利用復(fù)合函數(shù)的單調(diào)性分析求解.

①,由正弦定理得,因為三角形有唯一解,所以,所以該命題正確;

②,畫圖得

當(dāng)時,,所以該命題是真命題;

③假設(shè)△ABC是銳角三角形,,

所以,顯然矛盾;假設(shè)△ABC是直角三角形,顯然A,B不可能是直角,所以C是直角,此時,與已知矛盾,所以中一定為鈍角三角形,所以該命題是真命題;

④,設(shè)扇形的半徑為,扇形圓心角為銳角,弧長為,周長為定值,則它面積,當(dāng)且僅當(dāng)時取最大值,但是,不是銳角,所以該命題不正確;

⑤,因為函數(shù)是一個減函數(shù),所以函數(shù)的單增區(qū)間為的減區(qū)間,所以該命題是真命題.

故答案為:①②③⑤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)若

i)證明恰有兩個零點;

ii)設(shè)的極值點,的零點,且證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標原點,橢圓的焦距為,直線截圓與橢圓所得的弦長之比為,橢圓軸正半軸的交點分別為.

1)求橢圓的標準方程;

2)設(shè)點)為橢圓上一點,點關(guān)于軸的對稱點為,直線,分別交軸于點,.試判斷是否為定值?若是求出該定值,若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,BO、AOCO所在直線兩兩垂直,且AO=CO,∠BAO=60°,EAC的中點,三棱錐的體積為

(1)求三棱錐的高;

(2)在線段AB上取一點D,當(dāng)D在什么位置時,的夾角大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,為兩非零有理數(shù)列(即對任意的均為有理數(shù)),為一無理數(shù)列(即對任意的,為無理數(shù)).

1)已知,并且對任意的恒成立,試求的通項公式.

2)若為有理數(shù)列,試證明:對任意的,恒成立的充要條件為

3)已知,,對任意的,恒成立,試計算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

(1)若曲線在點處的切線與軸平行,求;

(2)當(dāng)時,函數(shù)的圖象恒在軸上方,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,橢圓過點,焦點,圓的直徑為

(1)求橢圓及圓的方程;

(2)設(shè)直線與圓相切于第一象限內(nèi)的點,直線與橢圓交于兩點.若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】長方體中,FAB的中點,直線平面,.

(Ⅰ)求長方體的體積;

(Ⅱ)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求處的切線方程;

2)令,已知函數(shù)有兩個極值點,且,求實數(shù)的取值范圍;

3)在(2)的條件下,若存在,使不等式對任意(取值范圍內(nèi)的值)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案