定義:對(duì)于兩個(gè)雙曲線,,若的實(shí)軸是的虛軸,的虛軸是的實(shí)軸,則稱,為共軛雙曲線.現(xiàn)給出雙曲線和雙曲線,其離心率分別為.
(1)寫出的漸近線方程(不用證明);
(2)試判斷雙曲線和雙曲線是否為共軛雙曲線?請(qǐng)加以證明.
(3)求值:.
(1)、;(2)是;(3)1.
解析試題分析:(1)由其圖像很容易知道的漸近線方程即軸和一、三象限的角平分線.從而寫出
的漸近線方程都是:和;(2)先利用漸近線與實(shí)軸、虛軸間的關(guān)系得到的實(shí)軸所在直線為
與虛軸所在直線為.然后計(jì)算實(shí)軸與雙曲線
的交點(diǎn),從而得到、 、.同理也可得到的類似數(shù)據(jù),從
而得到證明;(3)由上問即可得到,,所以="1" .
試題解析:(1)的漸近線方程都是:和. 3分
(2)雙曲線是共軛雙曲線. 4分
證明如下: 對(duì)于,實(shí)軸和虛軸所在的直線是和的角平分線所
的直線, 所以的實(shí)軸所在直線為,
虛軸所在直線為, 6分
實(shí)軸和的交點(diǎn)到原點(diǎn)的距離的平方.
又,所以 從而得; 8分
同理對(duì)于,實(shí)軸所在直線為,
虛軸所在直線為,
實(shí)軸和的交點(diǎn)到原點(diǎn)的距離的平方
,所以,從而得.
綜上所述,雙曲線是共軛雙曲線. 10分
(3) 由(2)易得,,
所以="1" . 13分
考點(diǎn):1.雙曲線的幾何性質(zhì);2.共軛雙曲線的定義;3.離心率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓上的點(diǎn)到其兩焦點(diǎn)距離之和為,且過(guò)點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)為坐標(biāo)原點(diǎn),斜率為的直線過(guò)橢圓的右焦點(diǎn),且與橢圓交于點(diǎn),,若,求△的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知、為橢圓的左、右焦點(diǎn),且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)過(guò)的直線交橢圓于兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?
若存在其最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)為,且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)是橢圓長(zhǎng)軸上的一個(gè)動(dòng)點(diǎn),過(guò)作方向向量的直線交橢圓于、兩點(diǎn),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:.
(1)橢圓的短軸端點(diǎn)分別為(如圖),直線分別與橢圓交于兩點(diǎn),其中點(diǎn)滿足,且.
①證明直線與軸交點(diǎn)的位置與無(wú)關(guān);
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過(guò)點(diǎn)的兩條互相垂直的直線,其中交圓于、兩點(diǎn),交橢圓于另一點(diǎn).求面積取最大值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的方程為,雙曲線的左、右焦點(diǎn)分別為的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn),
(1)求雙曲線的方程;
(2)若直線與橢圓及雙曲線都恒有兩個(gè)不同的交點(diǎn),且與的兩個(gè)交點(diǎn)A和B滿足(其中0為原點(diǎn)),求k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)為拋物線C上的一點(diǎn),且的外接圓圓心到準(zhǔn)線的距離為.
(I)求拋物線C的方程;
(II)若圓F的方程為,過(guò)點(diǎn)P作圓F的2條切線分別交軸于點(diǎn),求面積的最小值時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)P(1,2),,均在拋物線上.
(1)求該拋物線方程;
(2)若AB的中點(diǎn)坐標(biāo)為,求直線AB方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于不同的兩點(diǎn)A,B。已知點(diǎn)A的坐標(biāo)為。若,求直線的傾斜角。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com