【題目】為了響應(yīng)廈門市政府“低碳生活,綠色出行”的號(hào)召,思明區(qū)委文明辦率先全市發(fā)起“少開一天車,呵護(hù)廈門藍(lán)”綠色出行活動(dòng).“從今天開始,從我做起,力爭(zhēng)每周至少一天不開車,上下班或公務(wù)活動(dòng)帶頭選擇步行、騎車或乘坐公交車,鼓勵(lì)拼車……”鏗鏘有力的話語,傳遞了綠色出行、低碳生活的理念.
某機(jī)構(gòu)隨機(jī)調(diào)查了本市部分成年市民某月騎車次數(shù),統(tǒng)計(jì)如下:
人數(shù) 次數(shù) 年齡 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60] |
18歲至31歲 | 8 | 12 | 20 | 60 | 140 | 150 |
32歲至44歲 | 12 | 28 | 20 | 140 | 60 | 150 |
45歲至59歲 | 25 | 50 | 80 | 100 | 225 | 450 |
60歲及以上 | 25 | 10 | 10 | 18 | 5 | 2 |
聯(lián)合國世界衛(wèi)組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老年人.用樣本估計(jì)總體的思想,解決如下問題:
(1)估計(jì)本市一個(gè)18歲以上青年人每月騎車的平均次數(shù);
(2)若月騎車次數(shù)不少于30次者稱為“騎行愛好者”,根據(jù)這些數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“騎行愛好者”與“青年人”有關(guān)?
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)42.75;(2)見解析
【解析】試題分析:
(1)用區(qū)間中點(diǎn)値代替本組的次數(shù),然后乘以該組的頻率,求和后即為所求的平均次數(shù).(2)根據(jù)題意得到列聯(lián)表,然后求出,與臨界值表比較后可得結(jié)論.
試題解析:
(1)由統(tǒng)計(jì)表可得,本市一個(gè)18歲以上青年人每月騎車的平均次數(shù)為
(次).
(2)根據(jù)題意得到如下列聯(lián)表
騎行愛好者 | 非騎行愛好者 | 總計(jì) | |
青年人 | 700 | 100 | 800 |
非青年人 | 800 | 200 | 1000 |
總計(jì) | 300 | 1500 | 1800 |
由表可得
所以能在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為“騎行愛好者”與“青年人”有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種產(chǎn)品的質(zhì)量,從中分別隨機(jī)抽取了10件樣品,測(cè)量產(chǎn)品中某種元素的含量(單位:毫克),如圖所示是測(cè)量數(shù)據(jù)的莖葉圖.規(guī)定:當(dāng)產(chǎn)品中的此中元素的含量不小于18毫克時(shí),該產(chǎn)品為優(yōu)等品.
(1)試用樣品數(shù)據(jù)估計(jì)甲、乙兩種產(chǎn)品的優(yōu)等品率;
(2)若從甲、乙兩種產(chǎn)品的優(yōu)等品中各隨機(jī)抽取1件,抽到的2件優(yōu)等品中,“甲產(chǎn)品的含量28毫克優(yōu)等品必須在內(nèi),且乙產(chǎn)品的含量28毫克優(yōu)等品不包含在內(nèi)”為事件,求事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),且恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅原理也就是“等積原理”,它是由我國南北朝杰出的數(shù)學(xué)家祖沖之的兒子祖暅?zhǔn)紫忍岢鰜淼,祖暅原理的?nèi)容是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的平面所截,如果截得兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.已知,兩個(gè)平行平面間有三個(gè)幾何體,分別是三棱錐、四棱錐、圓錐(高度都為),其中:三棱錐的底面是正三角形(邊長為),四棱錐的底面是有一個(gè)角為的菱形(邊長為),圓錐的體積為,現(xiàn)用平行于這兩個(gè)平行平面的平面去截三個(gè)幾何體,如果截得的三個(gè)截面的面積相等,那么,下列關(guān)系式正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見如表:
(參考公式和計(jì)算結(jié)果:
, , , )
(1)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求的值,并估計(jì)的預(yù)報(bào)值.
(2)現(xiàn)準(zhǔn)備勘探新井,若通過1,3,5,7號(hào)并計(jì)算出的, 的值(, 精確到0.01)相比于(1)中的, ,值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請(qǐng)判斷可否使用舊井?
(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: 的焦點(diǎn)與橢圓: 的一個(gè)焦點(diǎn)重合,點(diǎn)在拋物線上,過焦點(diǎn)的直線交拋物線于、兩點(diǎn).
(Ⅰ)求拋物線的方程以及的值;
(Ⅱ)記拋物線的準(zhǔn)線與軸交于點(diǎn),試問是否存在常數(shù),使得且都成立?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計(jì)高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間(10,15)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為(為參數(shù),),以為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形, 平面, , , , 分別是, 的中點(diǎn).
(1)證明: ;
(2)設(shè)為線段上的動(dòng)點(diǎn),若線段長的最小值為,求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】試題分析:(1)證明線線垂直則需證明線面垂直,根據(jù)題意易得,然后根據(jù)等邊三角形的性質(zhì)可得,又,因此得平面,從而得證(2)先找到EH什么時(shí)候最短,顯然當(dāng)線段長的最小時(shí), ,在中, , , ,∴,由中, , ,∴.然后建立空間直角坐標(biāo)系,寫出兩個(gè)面法向量再根據(jù)向量的夾角公式即可得余弦值
解析:(1)證明:∵四邊形為菱形, ,
∴為正三角形.又為的中點(diǎn),∴.
又,因此.
∵平面, 平面,∴.
而平面, 平面且,
∴平面.又平面,∴.
(2)如圖, 為上任意一點(diǎn),連接, .
當(dāng)線段長的最小時(shí), ,由(1)知,
∴平面, 平面,故.
在中, , , ,
∴,
由中, , ,∴.
由(1)知, , 兩兩垂直,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,又, 分別是, 的中點(diǎn),
可得, , , ,
, , ,
所以, .
設(shè)平面的一法向量為,
則因此,
取,則,
因?yàn)?/span>, , ,所以平面,
故為平面的一法向量.又,
所以 .
易得二面角為銳角,故所求二面角的余弦值為.
【題型】解答題
【結(jié)束】
20
【題目】【2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考】已知橢圓: 的左頂點(diǎn)為,上頂點(diǎn)為,直線與直線垂直,垂足為點(diǎn),且點(diǎn)是線段的中點(diǎn).
(I)求橢圓的方程;
(II)如圖,若直線: 與橢圓交于, 兩點(diǎn),點(diǎn)在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com