已知f(x)=1+log2x(1≤x≤4),求函數(shù)g(x)=f2(x)+f(x2)的值域.

答案:
解析:

  g(x)=f2(x)+f(x2)=(1+log2x)2+(1+log2x2)=(log2x+2)2-2.

  ∵1≤x≤4,∴0≤log2x≤2.

  令t=log2x∈[0,2],則f(t)=(t+2)2-2,在[0,2]上是增函數(shù),

  ∴t=0時(shí),即x=1,g(x)min=2,t=2,即x=4時(shí),g(x)max=14.

  ∴g(x)的值域?yàn)閇2,14].


提示:

  以上解答有誤:將函數(shù)f(x)的定義域作為g(x)的定義域.事實(shí)上g(x)的定義域由即1≤x≤2.此時(shí)t=log2x∈[0,1].

  故當(dāng)x=1時(shí),g(x)min=2;當(dāng)x=2時(shí),g(x)max=7,故g(x)∈[2,7].

  由此可知,解決函數(shù)問(wèn)題,勿忘定義域!

  如何判斷兩個(gè)函數(shù)是否為同一函數(shù)?

  兩個(gè)函數(shù)當(dāng)且僅當(dāng)定義域與對(duì)應(yīng)法則分別相同時(shí),才是同一函數(shù).

  

  


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:黑龍江省牡丹江一中2010-2011學(xué)年高二下學(xué)期期末考試數(shù)學(xué)理科試題 題型:044

已知f(x)=lnx,g(x)=x2+mx+(m<0),直線l與函數(shù)f(x)的圖象相切,切點(diǎn)的橫坐標(biāo)為1,且直線l與函數(shù)g(x)的圖象也相切.

(Ⅰ)求直線l的方程及實(shí)數(shù)m的值;

(Ⅱ)若h(x)=f(x+1)-(x)(其中是g(x)的導(dǎo)函數(shù)),求函數(shù)h(x)的最大值;

(Ⅲ)當(dāng)0<b<a時(shí),求證:f(a+b)-f(2a)<

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年寧夏中衛(wèi)一中高三第三次模擬考試、數(shù)學(xué)試卷(理科) 題型:044

已知f(x)=lnx,(m<0),直線l與函數(shù)f(x)、g(x)的圖像都相切,且與函數(shù)f(x)的圖像的切點(diǎn)的橫坐標(biāo)為1.

(Ⅰ)求直線l的方程及m的值;

(Ⅱ)若h(x)=f(x+1)-(x)(其中(x)是g(x)的導(dǎo)函數(shù)),求函數(shù)h(x)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣東省汕頭市英華外國(guó)語(yǔ)學(xué)校2009-2010學(xué)年高二下學(xué)期開學(xué)檢測(cè)文科數(shù)學(xué)試題 題型:044

已知f(x)=lnx,g(x)=x2+mx+(m<0),直線l與函數(shù)f(x)、g(x)的圖像都相切,且與函數(shù)f(x)的圖像的切點(diǎn)的橫坐標(biāo)為1.

(Ⅰ)求直線l的方程及m的值;

(Ⅱ)若h(x)=f(x+1)-(x),求函數(shù)h(x)的最大值;

(Ⅲ)求證:對(duì)任意正整數(shù)n,總有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山西省介休十中2011屆高三下學(xué)期模擬考試數(shù)學(xué)理科試卷 題型:044

已知向量a=(1,1),b=(1,0),c滿足a·c=0,且|a|=|c|,b·c>0.

(1)求向量c;

(2)若映射f:(x,y)→(,)=xa+yc;

①求映射f下(1,2)的原象;

②若將(x,y)作點(diǎn)的坐標(biāo),問(wèn)是否存在直線l使得直線l上任一點(diǎn)在映射f的作用下,仍在直線上,若存在求出的l方程,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:重慶市重慶一中2012屆高三9月月考數(shù)學(xué)理科試題 題型:044

若存在實(shí)數(shù)k和b,使得函數(shù)f(x)與g(x)對(duì)其定義域上的任意實(shí)數(shù)x分別滿足:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)與g(x)的“和諧直線”.已知h(x)=x2,(x)=2elnx,(e為自然對(duì)數(shù)的底數(shù));

(1)F(x)=h(x)-(x)的極值

(2)函數(shù)h(x)和(x)是否存在和諧直線?若存在,求出此和諧直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案