已知?jiǎng)訄A過定點(diǎn)(1,0),且與直線x=-1相切.
(1)求動(dòng)圓圓心C的軌跡方程;
(2)設(shè)A、B是軌跡C上兩個(gè)不同的點(diǎn),且OA⊥OB,證明直線AB恒過定點(diǎn),并求定點(diǎn)的坐標(biāo).
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)設(shè)動(dòng)圓圓心C(x,y),由題設(shè)條件推導(dǎo)出
(x-1)2+y2
=|x+1|
,由此能求出動(dòng)圓圓心C的軌跡方程.
(2)設(shè)A(x1,y1),B(x2,y2),則y 12=4x1,y 22=4x2,由OA⊥OB推導(dǎo)出x1x2=16,y1y2=-16,由此利用直線方程和點(diǎn)差法能證明直線AB過定點(diǎn)(4,0).
解答: (1)解:設(shè)動(dòng)圓圓心C(x,y),
∵動(dòng)圓過定點(diǎn)(1,0),且與直線x=-1相切,
(x-1)2+y2
=|x+1|
,
整理,得y2=4x,
∴動(dòng)圓圓心C的軌跡方程為y2=4x.
(2)證明:設(shè)A(x1,y1),B(x2,y2),則y 12=4x1,y 22=4x2,
∵OA⊥OB,∴∠AOB=90,
y1y2
x1x2
=-
4
x1x2
x1x2
=-1,∴x1x2=16,y1y2=-16,
由直線AB得:y-y1=
y1-y2
x1-x2
(x-x1),
y 12=4x1,y 22=4x2,兩式相減,得
(y1+y2)(y1-y2)=4(x1-x2),
y1-y2
x1-x2 
=
4
y1+y2
,
∴y-y1=
4
y1+y2
(x-x1),
又∵y1y2=-16,y 12=4x1,y 22=4x2,
(y-y1)(y1+y2)=4(x-x1),
∴yy1+yy2-y 12-y1y2=4x-4x1,
yy1+yy2-4x1+16=4x-4x1
yy1+yy2=4x-16,
∴(y1+y2)y=4(x-4)
x=4時(shí),y恒為0
∴直線AB過定點(diǎn)(4,0).
點(diǎn)評(píng):本題考查動(dòng)點(diǎn)的軌跡方程的求法,考查直線恒過定點(diǎn)的證明,解題時(shí)要認(rèn)真審題,注意點(diǎn)差法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線C:2x2-y2=m(m>0)與拋物線y2=8x的準(zhǔn)線交于A,B兩點(diǎn),且|AB|=2
3
,則實(shí)數(shù)m的值為(  )
A、29B、20C、12D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)O,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄如下:A1(3,-2
3
)、A2(-2,0)、A3(4,-4)、A4
2
2
2
).
(Ⅰ)經(jīng)判斷點(diǎn)A1,A3在拋物線C2上,試求出C1、C2的標(biāo)準(zhǔn)方程;
(Ⅱ)求拋物線C2的焦點(diǎn)F的坐標(biāo)并求出橢圓C1的離心率;
(Ⅲ)過C2的焦點(diǎn)F直線l與橢圓C1交不同兩點(diǎn)M,N,且滿足
OM
ON
,試求出直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1﹙a>0,b>0﹚,F(xiàn)1,F(xiàn)2是其左右焦點(diǎn),若橢圓的離心率為
1
2
,橢圓的焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為3,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)橢圓上是否存在一點(diǎn)M,使點(diǎn)M到其左準(zhǔn)線的距離MN是MF1,MF2的等比中項(xiàng)?若存在,求出該點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2,且過點(diǎn)P(1,
3
2
).
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左、右焦點(diǎn)分別為F1、F2,過點(diǎn)F2的直線l與橢圓C交于M、N兩點(diǎn),當(dāng)直線l的傾斜角為45°時(shí),求|MN|的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)橢圓C:
x2
a2
+
y2
a2
=1(a>b>0)的左、右焦點(diǎn)為F1,F(xiàn)2,短軸的兩個(gè)端點(diǎn)分別為A,B,且滿足|
F1A
+
F1B
|=|
F2A
-
F2B
|,橢圓C經(jīng)過點(diǎn)(
2
,1).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過點(diǎn)M(
2
3
,0)且斜率為k的動(dòng)直線l與橢圓C相交于P,Q兩點(diǎn),問:在x軸的正半軸上是否存在一個(gè)定點(diǎn)T,使得無論直線l如何轉(zhuǎn)動(dòng),以PQ為直徑的圓恒過定點(diǎn)T?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P(-2,1)在拋物線x2=2py(p>0)上,且到圓C:x2+(y+b)2=1上點(diǎn)的最小距離為1.
(Ⅰ)求p和b的值;
(Ⅱ)過點(diǎn)P作兩條斜率互為相反數(shù)的直線,分別與拋物線交于兩點(diǎn)A,B,若直線AB與圓C交于不同兩點(diǎn)M,N.
(i)證明直線AB的斜率為定值;
(ii)求△PMN面積取最大值時(shí)直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校設(shè)計(jì)了一個(gè)實(shí)驗(yàn)學(xué)科的考查方案:考生從6道備選題中一次隨機(jī)抽取3道題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作,并規(guī)定:在抽取的3道題中,至少正確完成其中2道題便可通過考查.已知6道備選題中考生甲有4道題能正確完成,2道題不能完成;考生乙每題正確完成的概率都為
2
3
,且每題正確完成與否互不影響.
(1)求考生甲正確完成題目個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望;
(2)用統(tǒng)計(jì)學(xué)知識(shí)分析比較甲、乙兩考生哪位實(shí)驗(yàn)操作能力強(qiáng)及哪位通過考查的可能性大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
x+3y-3≥0
2x-y-3≤0
x-y+1≥0.
,則z=x+y的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案