【題目】在四棱錐中,四邊形是邊長為2的菱形,為正三角形,與平面所成的角為,平面平面.
(1)求證:;
(2)求平面與平面所成銳二面角的余弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)由題意過作,為垂足,連接,可得到平面,根據(jù)與平面所成的角為即,根據(jù)邊角關(guān)系可得到,從而有平面,再根據(jù)四邊形是邊長為2的菱形可得,所以有平面,即可證明;
(2) 以為原點,以,,的方向分別為軸,軸,軸的正方向.建立空間直角坐標(biāo)系,寫出相關(guān)點的坐標(biāo),求出平面與平面的法向量,利用數(shù)量積求夾角即可.
證明,(1)過作,為垂足,連接.
因為平面平面,平面平面.
所以平面,
所以為與平面所成的角,即.
因為.所以,
又,所以是的中點.
因為為正三角形.所以,
又,所以平面,
所以.
因為四邊形是邊長為2的菱形,所以.
又.所以平面.
所以.
解:(2)以為原點,以,,的方向
分別為軸,軸,軸的正方向.建立空間直角坐標(biāo)系,
,,,,
所以,,.
設(shè)平面的法向量為,則,即
取,則,
根據(jù)(1),平面,平面的法向量為,則
.
故平面與平面所成銳二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,是橢圓的左,右焦點,橢圓上一點滿足軸,,.
(1)求橢圓的標(biāo)準方程;
(2)過的直線交橢圓于兩點,當(dāng)的內(nèi)切圓面積最大時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面,,,是中點,是中點,是線段上一動點.
(1)當(dāng)為中點時,求證:平面平面;
(2)當(dāng)平面時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是某縣參加2007年高考的學(xué)生身高條形統(tǒng)計圖,從左到右的各條形圖表示學(xué)生人數(shù)依次記為A1、A2、…A10(如A2表示身高(單位:cm)在[150,155內(nèi)的人數(shù)].圖2是統(tǒng)計圖1中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個算法流程圖.現(xiàn)要統(tǒng)計身高在160~180cm(含160cm,不含180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是
A.i<6B.i<7C.i<8D.i<9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】疫情期間,為了更好地了解學(xué)生線上學(xué)習(xí)的情況,某興趣小組在網(wǎng)上隨機抽取了100名學(xué)生對其線上學(xué)習(xí)滿意情況進行調(diào)查,其中男女比例為2∶3,其中男生有24人滿意,女生有12人不滿意.
(1)完成列聯(lián)表,并回答是否有95%把握認為“線上學(xué)習(xí)是否滿意與性別有關(guān)”
滿意 | 不滿意 | 合計 | |
男生 | |||
女生 | |||
合計 |
(2)從對線上學(xué)習(xí)滿意的學(xué)生中,利用分層抽樣抽取6名學(xué)生,再在6名學(xué)生中抽取3名,記抽到的女生人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
.072 | 2.706 | 3.842 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,河南省鄭州市的房價依舊是鄭州市民關(guān)心的話題.總體來說,二手房房價有所下降,相比二手房而言,新房市場依然強勁,價格持續(xù)升高.已知銷售人員主要靠售房提成領(lǐng)取工資.現(xiàn)統(tǒng)計鄭州市某新房銷售人員一年的工資情況的結(jié)果如圖所示,若近幾年來該銷售人員每年的工資總體情況基本穩(wěn)定,則下列說法正確的是( )
A.月工資增長率最高的為8月份
B.該銷售人員一年有6個月的工資超過4000元
C.由此圖可以估計,該銷售人員2020年6,7,8月的平均工資將會超過5000元
D.該銷售人員這一年中的最低月工資為1900元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,,,,.過點做四棱錐的截面,分別交,,于點,已知,為的中點.
(Ⅰ)求證:平面;
(Ⅱ)求與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com