【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點(diǎn)O為線段BD的中點(diǎn),設(shè)點(diǎn)P在線段CC1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是( )
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ ,1]
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線E:x2=2py(p>0),直線y=kx+2與E交于A、B兩點(diǎn),且 =2,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為(0,﹣2),記直線CA、CB的斜率分別為k1 , k2 , 證明:k12+k22﹣2k2為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),證明:對(duì)任意的,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|2≤2x≤4},B={x|0<log2x<2},則A∪B=( )
A.[1,4]
B.[1,4)
C.(1,2)
D.[1,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,平面內(nèi)有三個(gè)向量 , , ,其中 與 的夾角為30°, 與 的夾角為90°,且| |=2,| |=2,| |=2 ,若 =λ +μ ,(λ,μ∈R)則( )
A.λ=4,μ=2
B.λ=4,μ=1
C.λ=2,μ=1
D.λ=2,μ=2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在區(qū)間D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,都存在常數(shù)M≥0,有|f(x)|≤M,則稱f(x)是區(qū)間D上有界函數(shù),其中M稱為f(x)上的一個(gè)上界,已知函數(shù)g(x)=log 為奇函數(shù).
(1)求函數(shù)g(x)在區(qū)間[ , ]上的所有上界構(gòu)成的集合;
(2)若g(1﹣m)+g(1﹣m2)<0,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=BC=2AC=2. (Ⅰ)若D為AA1中點(diǎn),求證:平面B1CD⊥平面B1C1D;
(Ⅱ)在AA1上是否存在一點(diǎn)D,使得二面角B1﹣CD﹣C1的大小為60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐S﹣ABCD中,SA⊥平面ABCD,∠ABC=∠BCD=90°,且SA=AB=BC=2CD=2,E是邊SB的中點(diǎn).
(1)求證:CE∥平面SAD;
(2)求二面角D﹣EC﹣B的余弦值大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】持續(xù)高溫使漳州市多地出現(xiàn)氣象干旱,城市用水緊張,為了宣傳節(jié)約用水,某人準(zhǔn)備在一片扇形區(qū)域(如圖3)上按照?qǐng)D4的方式放置一塊矩形ABCD區(qū)域宣傳節(jié)約用水,其中頂點(diǎn)B,C在半徑ON上,頂點(diǎn)A在半徑OM上,頂點(diǎn)D在 上,∠MON= ,ON=OM=10,m,設(shè)∠DON=θ,矩形ABCD的面積為S.
(Ⅰ)用含θ的式子表示DC,OB的長(zhǎng)‘
(Ⅱ)若此人布置1m2的宣傳區(qū)域需要花費(fèi)40元,試將S表示為θ的函數(shù),并求布置此矩形宣傳欄最多要花費(fèi)多少元錢?(精確到0.01)
(參考數(shù)據(jù): ≈1.732, ≈1.414)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com