【題目】在直角極坐標(biāo)系中,直線的參數(shù)方程為其中為參數(shù),其中為的傾斜角,且其中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立平面直角坐標(biāo)系,曲線C1的極坐標(biāo)方程,曲線C2的極坐標(biāo)方程.
(1)求C1、C2的直角坐標(biāo)方程;
(2)已知點(diǎn)P(-2,0),與C1交于點(diǎn),與C2交于A,B兩點(diǎn),且,求的普通方程.
【答案】(1)的直角坐標(biāo)方程為x=0,的直角坐標(biāo)方程為(2)l的普通方程為y=0
【解析】
(1)根據(jù),將和的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)寫出點(diǎn)的對(duì)應(yīng)的參數(shù)值,代入雙曲線中,得到,分別代入,得到關(guān)于的方程,解得,得到l的普通方程.
(1)曲線的直角坐標(biāo)方程為x=0
方程可化為。
將上式,得.
(2)直線l的參數(shù)方程為其中t為參數(shù),為l的傾斜角,且
則點(diǎn)Q對(duì)應(yīng)的參數(shù)值為,即
代入,得,整理,得
設(shè)A,B對(duì)應(yīng)的參數(shù)值分別為t1、t2,則
,解得
又因?yàn)?/span>,由題意,所以
所以,解得,
故l的普通方程為y=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P在拋物線x2=2y上,過點(diǎn)P作x軸的垂線,垂足為H,動(dòng)點(diǎn)Q滿足.
(1)求動(dòng)點(diǎn)O的軌跡E的方程;
(2)點(diǎn)M(-4,4),過點(diǎn)N(4,5)且斜率為k的直線交軌跡E于A,B兩點(diǎn),設(shè)直線MA,MB的斜率分別為k1,k2,求k1k2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種零件的質(zhì)量指標(biāo)值以分?jǐn)?shù)(滿分100分)衡量,并根據(jù)分?jǐn)?shù)的高低劃分三個(gè)等級(jí),如下表:
為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員隨機(jī)抽取了100件零件,進(jìn)行質(zhì)量指標(biāo)值檢查,將檢查結(jié)果進(jìn)行整理得到如下的頻率分布直方圖:
(1)若該生產(chǎn)線的質(zhì)量指標(biāo)值要求為:
第一條:生產(chǎn)線的質(zhì)量指標(biāo)值合格和優(yōu)秀的零件至少要占全部零件的75%,
第二條:生產(chǎn)線的質(zhì)量指標(biāo)值平均分不低于95分;
如果同時(shí)滿足以上兩條就認(rèn)定生產(chǎn)線的質(zhì)量指標(biāo)值合格,否則為不合格,請(qǐng)根據(jù)以上抽樣調(diào)查數(shù)據(jù),判斷該生產(chǎn)線的質(zhì)量指標(biāo)值是否合格?
(2)在樣本中,按質(zhì)量指標(biāo)值的等級(jí)用分層抽樣的方法從質(zhì)量指標(biāo)值不合格和優(yōu)秀的零件中抽取5件,再從這5件中隨機(jī)抽取2件,求這兩件的質(zhì)量指標(biāo)值恰好一個(gè)不合格一個(gè)優(yōu)秀的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C三個(gè)班共有學(xué)生100人,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲取了部分學(xué)生一周的鍛煉時(shí)間,數(shù)據(jù)如下表(單位:小時(shí)).
A班 | 6 | 6.5 | 7 | |
B班 | 6 | 7 | 8 | |
C班 | 5 | 6 | 7 | 8 |
(1)試估計(jì)C班學(xué)生人數(shù);
(2)從A班和B班抽出來的學(xué)生中各選一名,記A班選出的學(xué)生為甲,B班選出的學(xué)生為乙,若學(xué)生鍛煉相互獨(dú)立,求甲的鍛煉時(shí)間大于乙的鍛煉時(shí)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面有三個(gè)游戲規(guī)則,袋子中分別裝有球,從袋中無放回地取球,問其中不公平的游戲是( )
游戲1 | 游戲2 | 游戲3 |
袋中裝有一個(gè)紅球和一個(gè)白球 | 袋中裝有2個(gè)紅球和2個(gè)白球 | 袋中裝有3個(gè)紅球和1個(gè)白球 |
取1個(gè)球, | 取1個(gè)球,再取1個(gè)球 | 取1個(gè)球,再取1個(gè)球 |
取出的球是紅球→甲勝 | 取出的兩個(gè)球同色→甲勝 | 取出的兩個(gè)球同色→甲勝 |
取出的球是白球→乙勝 | 取出的兩個(gè)球不同色→乙勝 | 取出的兩個(gè)球不同色→乙勝 |
A.游戲1B.游戲2C.游戲3D.游戲2和游戲3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某“雙一流”大學(xué)專業(yè)獎(jiǎng)學(xué)金是以所學(xué)專業(yè)各科考試成績(jī)作為評(píng)選依據(jù),分為專業(yè)一等獎(jiǎng)學(xué)金、專業(yè)二等獎(jiǎng)學(xué)金及專業(yè)三等獎(jiǎng)學(xué)金,且專業(yè)獎(jiǎng)學(xué)金每個(gè)學(xué)生一年最多只能獲得一次.圖(1)是統(tǒng)計(jì)了該校年名學(xué)生周課外平均學(xué)習(xí)時(shí)間頻率分布直方圖,圖(2)是這名學(xué)生在年周課外平均學(xué)習(xí)時(shí)間段獲得專業(yè)獎(jiǎng)學(xué)金的頻率柱狀圖.
(Ⅰ)求這名學(xué)生中獲得專業(yè)三等獎(jiǎng)學(xué)金的人數(shù);
(Ⅱ)若周課外平均學(xué)習(xí)時(shí)間超過小時(shí)稱為“努力型”學(xué)生,否則稱為“非努力型”學(xué)生,列聯(lián)表并判斷是否有的把握認(rèn)為該校學(xué)生獲得專業(yè)一、二等獎(jiǎng)學(xué)金與是否是“努力型”學(xué)生有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC的面積為.
(1)求sinBsinC;
(2)若3cosB(sin2A+sin2B﹣sin2C)=sinAsinB,a=6,求b+c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,,、分別為,的中點(diǎn),點(diǎn)在線段上.
(1)若為的中點(diǎn),求證:平面平面;
(2)求證:平面;
(3)若,求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com