【題目】下列命題正確的個數是( )
①命題“x0∈R,x02+1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函數f(x)=cos2ax﹣sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量 與 的夾角是鈍角”的充分必要條件是“ <0”.
A.1
B.2
C.3
D.4
科目:高中數學 來源: 題型:
【題目】在四棱錐中,平面,是正三角形,與的交點恰好是中點,又,,點在線段上,且.
()求證:.
()求證:平面.
()設平面平面,試問:直線是否與直線平行,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個類比中,正確的個數為
(1)若一個偶函數在R上可導,則該函數的導函數為奇函數。將此結論類比到奇函數的結論為:若一個奇函數在R上可導,則該函數的導函數為偶函數。
(2)若雙曲線的焦距是實軸長的2倍,則此雙曲線的離心率為2.將此結論類比到橢圓的結論為:若橢圓的焦距是實軸長的一半,則此橢圓的離心率為.
(3)若一個等差數列的前3項和為1,則該數列的第2項為.將此結論類比到等比數列的結論為:若一個等比數列的前3項積為1,則該數列的第2項為1
(4)在平面上,若兩個正三角形的邊長比為1:2,則它們的面積比為1:4.將此結論類比到空間中的結論為:在空間中,若兩個正四面體的棱長比為1:2,則它們的體積比為1:8.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公比為4的等比數列{bn}中,若Tn是數列{bn}的前n項積,則有仍成等比數列,且公比為4100;類比上述結論,在公差為3的等差數列{an}中,若Sn是{an}的前n項和,則有________也成等差數列,該等差數列的公差為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x﹣a(x+1)ln(x+1),(x>﹣1,a≥0)
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)當a=1時,若方程f(x)=t在 上有兩個實數解,求實數t的取值范圍;
(Ⅲ)證明:當m>n>0時,(1+m)n<(1+n)m .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 .
(1)求函數f(x)的值域;
(2)已知銳角△ABC的兩邊長分別為函數f(x)的最大值與最小值,且△ABC的外接圓半徑為 ,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(xR),g(x)=2a-1
(1)求函數f(x)的單調區(qū)間與極值.
(2)若f(x)≥g(x)對恒成立,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com