甲乙兩隊(duì)進(jìn)行排球比賽,已知在一局比賽中甲隊(duì)獲勝的概率是
2
3
,沒(méi)有平局.若采用三局兩勝制比賽,即先勝兩局者獲勝且比賽結(jié)束,則甲隊(duì)獲勝的概率等于( 。
A、
4
9
B、
20
27
C、
8
27
D、
16
27
考點(diǎn):相互獨(dú)立事件的概率乘法公式
專(zhuān)題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:分兩種情況:①甲隊(duì)前2局連勝②甲隊(duì)在前2局與乙打成1:1而第3局取勝.加以討論并分別算出2種情況下的概率,再用概率的加法公式,即可得到本題的概率.
解答: 解:甲隊(duì)獲勝分2種情況
①第1、2兩局中連勝2場(chǎng),概率為P1=
2
3
×
2
3
=
4
9
;
②第1、2兩局中甲隊(duì)失敗1場(chǎng),而第3局獲勝,
概率為P2=C21
2
3
(1-
2
3
)×
2
3
=
8
27

因此,甲隊(duì)獲勝的概率為P=P1+P2=
20
27

故選:B.
點(diǎn)評(píng):本題給出甲乙兩隊(duì)進(jìn)行排球比賽的模型,求三局兩勝制比法下甲隊(duì)獲勝的概率,著重考查了概率的加法公式和相互獨(dú)立事件同時(shí)發(fā)生的概率等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sinx和y=cosx都是遞減區(qū)間的是(  )
A、[2kπ-
1
2
π,2kπ]
B、[2kπ-π,2kπ-
1
2
π]
C、[2kπ+
1
2
π,2kπ+π]
D、[2kπ,2kπ+
1
2
π]其中k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x與y之間的一組數(shù)據(jù)為
x 1 2 3 4
y 1 5-a 3 7+a
則y與x的回歸直線方程
y
=
b
x+
a
必過(guò)定點(diǎn)( 。
A、(4,
3
2
B、(
5
2
,4)
C、(6,8)
D、(
5
2
,4+a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若曲線f(x)=sinx+1在x=π處的切線與直線ax+2y+1=0相互垂直,則實(shí)數(shù)a等于( 。
A、2B、1C、-1D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=3,b=4,c=
13
,那么C等于( 。
A、30°B、45°
C、60°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
a
x
+b,不等式xf(x)<0的解集為(1,3).
(Ⅰ)求實(shí)數(shù)a、b的值;
(Ⅱ)若關(guān)于x的方程f(2x)-k•2-x-k=0有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-x2+ax+b的圖象在點(diǎn)P(0,f(0))處的切線方程為y=3x-2.
(1)求實(shí)數(shù)a,b的值;   
(2)若對(duì)于區(qū)間[-2,2]上任意兩個(gè)自變量的值x1,x2都有|f(x1)-f(x2)|≤c,求實(shí)數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:若對(duì)任意n∈N*,數(shù)列{an}的前n項(xiàng)和Sn都為完全平方數(shù),則稱數(shù)列{an}為“完全平方數(shù)列”;特別的,若存在n∈N*,使數(shù)列{an}的前n項(xiàng)和Sn為完全平方數(shù),則稱數(shù)列{an}為“部分平方數(shù)列”.
(1)若數(shù)列{an}為“部分平方數(shù)列”,且an=
2,      n=1
2n-1, n≥2
(n∈N*),求使數(shù)列{an}的前n項(xiàng)和Sn為完全平方數(shù)列時(shí)n的值;
(2)若數(shù)列{bn}的前n項(xiàng)和Tn=(n-t)2(其中t∈N*),那么數(shù)列{|bn|}是否為“完全平方數(shù)列”?若是,求出t的值;若不是,請(qǐng)說(shuō)明理由;
(3)試求所有為“完全平方數(shù)列”的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,AD=2AB=2,∠BAD=60°,M、N分別是對(duì)角線BD、AC上的點(diǎn),AC、BD相交于點(diǎn)O,已知BM=
1
3
BO,ON=
1
3
OC.設(shè)向量
AB
=
a
AD
=
b

(1)試用
a
,
b
表示
MN
;
(2)求|
MN
|

查看答案和解析>>

同步練習(xí)冊(cè)答案