【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(1)若, ,求函數(shù)的單調(diào)區(qū)間;
(2)若,且方程在內(nèi)有解,求實(shí)數(shù)的取值范圍.
【答案】(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)
【解析】【試題分析】(1)先求出函數(shù)解析式導(dǎo)數(shù),再借助導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系求解;(2)依據(jù)題設(shè)先將問題進(jìn)行等價(jià)轉(zhuǎn)化,再構(gòu)造函數(shù)運(yùn)用導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系研究函數(shù)的圖像的形狀分析求解:
(1)若, ,則,
由,得或,
①若,即時(shí), ,此時(shí)函數(shù)單調(diào)遞減,單調(diào)遞減區(qū)間為;
②若,即時(shí),由,得;由得,或,
所以單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)若,∴, 則,
若方程在內(nèi)有解,即在內(nèi)有解,
即在有解.
設(shè),則在內(nèi)有零點(diǎn),設(shè)是在內(nèi)的一個(gè)零點(diǎn),
因?yàn)?/span>, ,所以在和上不可能單調(diào),
由,設(shè),則在和上存在零點(diǎn),
即在上至少有兩個(gè)零點(diǎn),因?yàn)?/span>,
當(dāng)時(shí), , 在上遞增,不合題意;
當(dāng)時(shí), , 在上遞減,不合題意;
當(dāng)時(shí),令,得,則在上遞減,在上遞增,
在上存在最小值.
若有兩個(gè)零點(diǎn),則有, .
所以, ,
設(shè),則,令,得,
當(dāng)時(shí), ,此時(shí)函數(shù)遞增;
當(dāng)時(shí), ,此時(shí)函數(shù)遞減,
則,所以恒成立.
由, ,所以,
當(dāng)時(shí),設(shè)的兩個(gè)零點(diǎn)為,
則在上遞增,在上遞減,在上遞增,
則, ,則在內(nèi)有零點(diǎn),
綜上,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(Ⅰ)若曲線在軸上的截距為-1,且在點(diǎn)處的切線垂直于直線,求實(shí)數(shù)的值;
(Ⅱ)記的導(dǎo)函數(shù)為, 在區(qū)間上的最小值為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行漢字聽寫比賽,為了了解本次比賽成績情況,從得分不低于50分的試卷中隨機(jī)抽取100名學(xué)生的成績(得分均為整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | [50,60) | 5 | 0.05 |
第2組 | [60,70) | 0.35 | |
第3組 | [70,80) | 30 | |
第4組 | [80,90) | 20 | 0.20 |
第5組 | [90,100] | 10 | 0.10 |
合計(jì) | 100 | 1.00 |
(Ⅰ)求的值;
(Ⅱ)若從成績較好的第3、4、5組中按分層抽樣的方法抽取6人參加市漢字聽寫比賽,并從中選出2人做種子選手,求2人中至少有1人是第4組的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)由數(shù)字1、2、3、4、5、6、7組成無重復(fù)數(shù)字的七位數(shù)
求三個(gè)偶數(shù)必相鄰的七位數(shù)的個(gè)數(shù)及三個(gè)偶數(shù)互不相鄰的七位數(shù)的個(gè)數(shù)
(2)六本不同的書,分為三組,求在下列條件下各有多少種不同的分配方法?
(I)每組兩本
(II)一組一本,一組二本,一組三本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)a=2時(shí),求曲線在點(diǎn)處的切線方程;
(2)設(shè)函數(shù),討論的單調(diào)性并判斷有無極值,有極值時(shí)求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說:“數(shù)學(xué)物理不分家,如果物理成績好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題!蹦嘲噌槍(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系的結(jié)論,F(xiàn)從該班隨機(jī)抽取5位學(xué)生在一次考試中的數(shù)學(xué)和物理成績,如下表:
(1)求數(shù)學(xué)成績y對(duì)物理成績x的線性回歸方程。若某位學(xué)生的物理成績?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績;
(2)要從抽取的這5位學(xué)生中隨機(jī)抽取2位參加一項(xiàng)知識(shí)競(jìng)賽,求選中的學(xué)生的數(shù)學(xué)成績至少有一位高于120分的概率。(參考公式: 參考數(shù)據(jù): )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓(),圓(),若圓的一條切線與橢圓相交于兩點(diǎn).
(1)當(dāng), 時(shí),若點(diǎn)都在坐標(biāo)軸的正半軸上,求橢圓的方程;
(2)若以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),探究之間的等量關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓和點(diǎn),動(dòng)圓經(jīng)過點(diǎn)且與圓相切,圓心的軌跡為曲線
(1)求曲線的方程;
(2)點(diǎn)是曲線與軸正半軸的交點(diǎn),點(diǎn)在曲線上,若直線的斜率滿足求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com