分析:(1)由tan2α=
=
=1,將tanα=
-1代入可求解,由α為銳角,得α,進而求得函數(shù)表達式.
(2)(i)由數(shù)列{a
n}滿足
a1=, a
n+1=f(a
n)(n∈N
*),知
an+1=an2+an,由此能夠證明a
n+1>a
n(n∈N
*).
(ii)由數(shù)列{a
n}滿足
a1=, ,
an+1=an2+an=a
n(a
n+1),能夠?qū)С?span id="md5vhxp" class="MathJye">
=
-
,利用裂項求和法得到
++…+
=2-
,由此能夠證明1<
++…+
<2(n≥2,n∈N
*)
解答:解:(1)解:∵tan2α=
=
=1
又∵
α∈(0,),
∴α=
,∴sin(2α+
)=1,
∴f(x)=x
2+x.
(2)(i)∵數(shù)列{a
n}滿足
a1=, a
n+1=f(a
n)(n∈N
*),
∴
an+1=an2+an,
∴a
n+1-a
n=a
n2>0,
∴a
n+1>a
n(n∈N
*).
(ii)∵數(shù)列{a
n}滿足
a1=, ,
an+1=an2+an=a
n(a
n+1),
∴
==
-,
∴
=-,
∴
++…+
=(
-)+(
-)+…+(
-)
=
-=2-
,
∴1<
++…+
<2(n≥2,n∈N
*).
點評:本題考查函數(shù)解析式的求法和不等式的證明,具體涉及到正切函數(shù)的倍角公式、數(shù)列與函數(shù)、數(shù)列與不等式的綜合,解題時要認(rèn)真審題,仔細(xì)解答,注意裂項求和法的合理運用.